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1 Introduction 

The ongoing scaling in feature size has caused integrated circuit (IC) behavior 
vulnerable to soft errors as well as process, voltage, and temperature variations. 
Thus, the challenge of assuring strictly exact computing is increasing [1]. On the 
other hand, present-age computing systems are pervasive, portable, embedded, and 
mobile, which led to an ever-increasing demand for ultra-low power consumption, 
small footprint, and high-performance systems. Such battery-powered systems are 
the main pillars of the internet of things (IoT), which do not necessarily need entirely 
accurate results. 

Approximate computing (AC), known as best-effort computing, is a nascent 
computing paradigm that allows us to achieve these objectives by compromising the 
arithmetic accuracy [2]. Nowadays, many applications, such as image processing, 
multimedia, recognition, machine learning, communication, big data analysis, and 
data mining, are error-tolerant and thus can benefit from approximate computing. 
These applications exhibit intrinsic error resilience due to the following factors [3]: 
(i) redundant and noisy input data, (ii) lack of golden or single output, (iii) imperfect 
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perception in the human sense, and (iv) the usage of implementation algorithms with 
self-healing and error attenuation patterns. 

Different approximation strategies, which fall under the umbrella of approximate 
computing, e.g., the voltage over scaling [4], algorithmic approximations [5], and 
approximation of basic arithmetic operations [6], have gained a significant research 
interest, in both academia and industry, such as IBM [7], Intel [8], and Microsoft 
[9]. However, approximate computing is still immature and does not have standards 
yet, which poses severe bottlenecks and main challenges. Thus, future work of AC 
should be guided by the following general principles to achieve the best efficiency 
[3]: 

1. Significance-driven approximation: Identifying the approximable parts of an 
application or circuit design is a great challenge. Therefore, it is critical to 
distinguish the approximable parts with their approximation settings. 

2. Measurable notion of approximation quality: Quality specification and verifi-
cation of approximate design are still open challenges, where quality metrics 
are application and user-dependent. To quantify approximation errors, various 
quality metrics are used. 

3. Quality configuration: Error resiliency of applications depends on the applied 
inputs and the context in which the outputs are consumed. 

4. Asymmetric approximation benefits: It is essential to identify the approximable 
components of the design, which reduces the quality insignificantly while 
improving efficiency considerably. 

For a static approximate design, the approximation error continues during its 
operational lifetime. It restricts approximation versatility and results in under- or 
over-approximated systems for dynamic input data, causing excessive power usage 
and insufficient accuracy, respectively. Given the dynamic nature of the applied 
inputs into static approximate designs, errors are the norm rather than the exception 
in approximate computing, where the error magnitude depends on the user inputs 
[10]. On the other hand, the defined tolerable error threshold, i.e., target output 
quality (TOQ), can be dynamically changed. In both cases, errors with a high value 
produced by approximate components in an approximate accelerator, even with a 
low error rate, have a more significant impact on the quality than those caused by 
approximate parts with a small magnitude. This is in line with the notion of fail-
small, fail-rare, or fail-moderate approaches, [11], where error magnitudes and rates 
should be restricted to avoid high loss in the output quality. The fail-small technique 
allows approximations with low error magnitudes, while the fail-rare technique 
allows approximations with low error rates. On the other hand, the fail-moderate 
technique allows approximations with moderate error magnitude and moderate error 
rate [12]. Thus, the approaches mentioned above limit the design space to prevent 
approximations with high error rates and high error magnitudes, where such a 
combination degrades the quality loss significantly. 

Quality assurance of approximate computing is still missing a mathematical 
model for the impact of approximation on the output quality [3]. Toward this goal, 
in this chapter, we develop a runtime adaptive approximate accelerator. For that,
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we utilize a set of energy-efficient approximate multipliers which we designed in 
[13]. The adaptive design is based on fine-grained input data to satisfy a user-
defined target output quality (TOQ) constraint. Design adaptation uses a machine 
learning-based design selector to dynamically choose the most suitable approximate 
design for runtime data. The target approximate accelerator is implemented with 
configurable levels and types of approximate multipliers. 

1.1 Approximate Computing Error Metrics 

Approximation introduces accuracy as a new design metric. Thus, several 
application-dependent error metrics are used to quantify approximation errors 
and evaluate design accuracy [14]. For example, considering an approximate design 
with two inputs, i.e., X and Y , of  n-bit each, where the exact result is (P ) and the 
approximate result is (. P '), these error metrics include: 

• Error Distance (ED): The arithmetic difference between the exact output and the 
approximate output for a given input, which is presented by .ED = |P − P '|. 

• Error Rate (ER): Also called error probability, which is the percentage of 
erroneous outputs among all outputs. 

• Mean Error Distance (MED): The average of ED values for a set of outputs 
obtained by applying a set of inputs. MED is a useful metric for measuring the 
implementation accuracy of multiple-bit circuit design. 

• Normalized Error Distance (NED): The normalization of MED by the maxi-
mum result that an exact design can have (.PMax). NED is an invariant metric 
independent of the size of the circuit. Therefore, it is used for comparing circuits 
of different sizes, and it is expressed as: 

• Relative Error Distance (RED): The ratio of ED to the accurate output, which 
equals .RED = ED/P . 

• Mean Relative Error Distance (MRED): The average value of all possible 
relative error distances (RED). 

• Mean Square Error (MSE): It is defined as the average of the squared ED values. 
• Peak Signal-to-Noise Ratio (PSNR): The peak signal-to-noise ratio is a fidelity 
metric used to measure the quality of the output images; it indicates the ratio of 
the maximum pixel intensity to the distortion. 

The presented metrics are not mutually exclusive, where one application may use 
several quality metrics. 

1.2 Approximate Accelerators 

Hardware accelerators are special hardware, which is devoted for executing fre-
quently called functions. Accelerators are more efficient than software running on
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general-purpose processors. Generally, they are constructed by connecting multiple 
simple arithmetic modules. The existing literature has proposed the design of 
approximate accelerators using neural networks [15] or approximate functional 
units, particularly approximate adders [16] and multipliers [17]. Moreover, several 
functionally approximate designs for basic arithmetic modules, including adders 
[6], dividers [18], and multipliers [19], have been investigated for their pivotal role 
in various applications. These individually designed components are rarely used 
alone, especially in computationally intensive error-tolerant applications, which 
are amenable to approximation. The optimization of accuracy performance at 
the accelerator level has received little or no attention in the previous literature. 
Generally, hardware accelerators are constructed by connecting multiple simple 
arithmetic modules. For example, discrete Fourier transform (DFT) and discrete 
cosine transform (DCT) modules are used in signal and image processing. Approx-
imate multipliers and multiply-accumulate units (MACs) are intensively used to 
build approximate accelerators. 

Multipliers are one of the most foundational components for most functions 
and algorithms in classical computing. However, they are the most energy-costly 
units compared to other essential CPU functions such as register shifts or binary 
logical operators. Thus, their approximation would introduce an enhancement in 
their performance and energy, which automatically induces crucial benefits for the 
whole application. Approximate multipliers have been mainly designed using three 
techniques: 

(i) Approximation in partial product generation: For example, Kulkarni et al. [20] 
proposed an approximate .2 × 2 binary multiplier at the gate level by changing 
a single entry in the Karnaugh map with an error rate of .1/16. 

(ii) Approximation in partial product tree: For example, error-tolerant multipliers 
(ETM) [21] divide the input operands into two parts, i.e., the multiplication part 
for the MSBs and the non-multiplication part for the LSBs, thus omitting the 
generation of some partial products [19]. 

(iii) Approximation in partial product summation: Approximate full adder (FA) 
cells are used to form an array multiplier, e.g., in [22], the approximate mirror 
adder has been used to develop a multiplier. 

We focus on array multipliers, which are not the fastest neither the smallest. 
Their short wiring gives them a periodic structure with a compact hardware layout. 
Thus, they are one of the most used in embedded system on chip (SoC). In [23] 
and [24], we designed various 8- and 16-bit approximate array multipliers based on 
approximation in partial product summation. 

1.3 Quality Control of Approximate Accelerators 

Managing the quality of approximate hardware designs for dynamically changing 
inputs has substantial significance to guarantee that the obtained results satisfy
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the required target output quality (TOQ). To the best of our knowledge, there are 
very few works targeting the assurance of the accuracy of approximate systems 
compared to designing approximate components. While most prior works focus on 
error prediction, we propose to overcome the approximation error through an input-
dependent self-adaptation of design. 

Mainly, there are two approaches for monitoring and controlling the accuracy 
of the results of approximate accelerators at runtime. The first approach suggests 
to periodically, through sampling techniques, measure the error of an accelerator 
through comparing its outcome with the exact computation performed by the host 
processor. Then, a re-calibration and adjustment process is performed to improve 
the quality in subsequent invocations of the accelerator if the error is found to 
be above a defined range, e.g., Green [25] and SAGE [26]. However, the quality 
of unchecked invocations cannot be ensured, and the previous quality violations 
cannot be compensated. The second approach relies on implementing lightweight 
pre-trained error predictors to expect if the invocation of an approximate accelerator 
would produce an unacceptable error for a particular input dataset [27, 28]. 

However, the works [25–27], and [28] mainly target controlling software approx-
imation, i.e., loops and functions approximation, through program re-execution 
and thus are not applicable for hardware designs. Moreover, they ignore input 
dependencies and do not consider choosing an adequate design from a set of design 
choices. Overall, none of these state-of-the-art techniques exploits the potential 
of different settings of approximate computing and their adaptations based on a 
user-specified quality constraint to ensure the accuracy of the individual outputs, 
which is the main idea we propose. Design adaptation could be implemented in 
software-based systems by having different versions of the approximate code, while 
hardware-based systems rely on having various implementations for the functional 
units. However, concurrently having such functional units diminishes approximation 
benefits. Thus, dynamic partial reconfiguration (DPR) could be used to have only a 
single implementation of the design at any instance of time. 

2 Proposed Methodology 

We aim to assure the quality of approximation by design adaptation by predicting 
the most suitable settings of the approximate design to execute the inputs. The 
proposed method predicts the design settings based on the applied input data and 
user preferences, without losing the gains of approximations. We mostly consider 
the case of approximate accelerators built with approximate functional units such as 
approximate multipliers. 

We propose a comprehensive methodology that handles the limitations of the 
current state of the art in terms of fine-grained input dependency, suitability 
for various approximate modules (e.g., adders, dividers, and multipliers), and 
applicability to both hardware and software implementations. Figure 1 provides a 
general overview of the proposed methodology for design adaptation. As shown in
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Fig. 1 General overview of the proposed methodology 

the figure, the methodology includes two phases: (1) The first is an offline phase, 
which is executed once for building a machine learning-based model. Such a model 
predicts the design settings. (2) The second is an online stage, where the machine 
learning-based model constantly accepts inputs and predicts accordingly based on 
the runtime inputs. The proposed methodology encompasses the following main 
steps: 

(1) Building a library of approximate designs: The first step is designing the library 
of basic functional units, such as adders, multipliers, and dividers, with different 
settings, which will be integrated into a quality-assured approximate design. 
The characteristics of each design, e.g., accuracy, area, power, delay, and energy 
consumption, should be evaluated to highlight the benefits of approximation. 

(2) Building a machine learning-based model: In the offline phase, we use super-
vised learning and employ decision trees (DT) and neural network (NN) 
algorithms to build a model to predict the unseen data, e.g., the design 
settings. This step incorporates generating and pre-processing the training data, 
such as quantization, sampling, and reduction. The training inputs are applied 
exhaustively to an approximate design to create the training data. For n-bit 
designs with two inputs, the size of the input combinations is . 22n. 

(3) Predicting the approximation settings: In the online phase, the user-specified 
runtime inputs, i.e., the target output quality (TOQ) and the inputs of the approx-
imate design, are given to the ML-based models to predict approximation-
related output, i.e., setting of the adaptive design. The implemented ML-based 
model should be lightweight, i.e., have a high prediction accuracy with fast 
execution. 

(4) Integrating the approximate accelerator into error-resilient applications: For  
adaptive design, the approximate accelerator, which has been nominated by the 
ML-based model, is adapted within an error-resilient application. Such design
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could be implemented in software (off-field-programmable gate array (FPGA), 
as explained in Sect. 3) or in hardware (on-FPGA, as described in Sect. 4). 

Approximation approaches demand a quality assurance to adjust approximation 
settings/knobs and monitor the quality of fine-grained individual outputs. There are 
two approaches to adjusting the settings of an approximate program to ensure the 
quality of results: 

(i) Forward design [29], which sets the design knobs and then observes the quality 
of results. However, the output quality of some inputs may reach unacceptable 
levels. 

(ii) Backward design [30], which tries to locate the optimal knob setting for a given 
bound of output quality; this requires examining a large space of knob settings 
for a given input, which is unmanageable. 

We present an adaptive approximate design that allows altering the settings of 
approximation, at runtime to meet the preferred output quality. The principal idea is 
to generate a machine learning-based input-aware design selector, which can adjust 
the approximate design based on the applied inputs, to meet the required quality 
constraints. Our technique is general in terms of quality metrics and supported 
approximate designs. It is primarily based on a library of 8- and 16-bit approximate 
multipliers with 20 different configurations and well-known power dissipation, 
performance, and accuracy profiles [13]. Moreover, we utilize a backward design 
approach to dynamically adjust the design to satisfy the desired target output quality 
(TOQ) based on machine learning (ML) models. The TOQ is a user-defined quality 
constraint, which represents the maximum permissible error for a given application. 
The proposed design flow is adaptable, i.e., applicable to approximate functional 
units other than multipliers, e.g., approximate multiply-accumulate units [31] and 
approximate meta-functions [32]. 

2.1 Machine Learning-Based Models 

ML-based algorithms find solutions by learning through training data [33]. Super-
vised learning allows for a rapid, flexible, and scalable way to develop accurate 
models that are specific to the set of application inputs and TOQ. The error for an 
approximate design with particular settings can be predicted based on the applied 
inputs. In [34], we designed and evaluated various ML-based models, based on 
the analyzed data and several algorithms, developed in the statistical computing 
language R. These models express the design selector for the adaptive design. 
Linear regression (LR) models were found to be the simplest to develop; however, 
their accuracy is the lowest, i.e., around 7%. Thus, they are not suitable for our 
proposed methodology. On the other hand, decision tree (DT) models based on both 
C5.0 and rpart algorithms achieve an accuracy of up to 64%, while random forest 
(RF) models, with an overhead of 25 decision trees, achieve an accuracy of up to
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68%. The most accurate models are based on neural networks, but they suffer from 
long development time, design complexity, and high-energy overhead [27]. In this 
work, we implement and evaluate two versions of the design selector, based on 
decision tree and neural network models. Accordingly, we identify and select the 
most suitable one to implement in our methodology. 

2.1.1 Decision Tree-Based Design Selector 

The DT algorithm uses a flowchart-like tree layout to partition data into various 
predefined classes, thereby providing the description, categorization, and general-
ization of the given datasets [35]. Unlike the linear model, it models non-linear 
relationships quite well. Thus, it is used in a wide range of applications, such as 
credit risk of loans and medical diagnosis [36]. Decision trees are usually employed 
for classification over datasets, through recursively partitioning the data, such that 
observations with the same label are grouped [36]. 

Generally speaking, a decision tree model could be replaced by a lookup table 
(LUT) which contains all the training data that are used to build the DT model [34]. 
When searching the LUTs, we could use the first matched value, i.e., design settings 
that satisfy the TOQ, which could be a better solution obtained with a little search 
effort. For DT-based models, we do not need to specify which value to retrieve. 
However, it is possible to obtain a result which is closer to the TOQ by changing 
the settings of the tree such as (1) the maximum depth of any node of the tree, 
(2) the minimum number of observations that must exist in a node in order for a 
split to be attempted, and (3) the minimum number of observations in any terminal 
node. In general, for embedded and limited resource systems, a lookup table is not a 
viable solution if the number of entries becomes very large [37]. In fact, for a circuit 
with two 16-bit inputs, we need to generate . 232 input patterns to cover all possible 
scenarios of a circuit. 

2.1.2 Neural Network-Based Design Selector 

We implemented a two-step NN-based design selector by predicting the design 
Degree first (how much to approximate) and then the Type (which approximate full 
adder to use). The model for Degree prediction has an accuracy of 82.17%, while the 
four models for Type prediction have an average accuracy of 67.3%. These models 
have a single hidden layer with a sigmoid activation function. 

3 Software-Based Adaptive Design of Approximate 
Accelerators 

We present a detailed description of the proposed methodology for designing adap-
tive approximate accelerators, where the proposed design can be implementable
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in both software and hardware. This section shows the aspects of software-based 
implementation. Section 4 is devoted to the FPGA-based hardware implementation. 

3.1 Adaptive Design Methodology 

As shown in Fig. 2, the proposed methodology contains two phases: (1) an offline 
stage, where we build an ML-based model, and (2) an online stage, where we use 
the ML-based model based on the inputs to anticipate the settings of the adaptive 
design. The detailed steps of the presented methodology are: 

(1) Generating of Training Data: Inputs are applied exhaustively to the approximate 
library to create the training data for building the ML-based model (design 
selector). For 8- and 16-bit designs, the size of the input combinations is . 216 and 
. 232, respectively. Thus, a sampling of the training data could be used because it 
is impossible to generate an exhaustive training dataset for large circuits. 

(2) Clustering/Quantizing of Training Data: Evaluating the design accuracy for a 
single input can provide the error distance (ED) metric only. However, mean 
error metrics (e.g., mean square error (MSE), peak signal-to-noise ratio (PSNR), 
and normalized error distance (NED)) are evaluated over a set of successively 
applied data rather than a scalar input. Thus, inputs with a specific distance from 
each other are considered a single cluster with the same estimated error metric. 
We propose to cluster every 16 consecutive input values. Based on that, each 
input for an 8-bit multiplier encompasses 16 clusters rather than 256 inputs. 
Similarly, for the 16-bit multiplier design, the number of clustered inputs is 
reduced to . 224 rather than . 232. 

(3) Pre-processing of Training Data: Inputs could be applied exhaustively for small 
circuits, e.g., 8-bit multipliers. However, the size of the input combinations 
for 16- and 32-bit designs is significant. Therefore, we have to reduce the 
size of the training data through sampling approaches to design a smaller and 
more efficient ML-based model. Moreover, for 16-bit designs, we prioritize the 
training data based on their area, power, and delay as well as accuracy and then 
reduce the training data accordingly. 

(4) Building of Machine Learning-Based Model: We built decision trees and neural 
network-based models, which act as design selectors, to predict the most 
suitable settings of the design based on the applied inputs. 

(5) Selection of Approximate Design: In the online phase, the user inputs, i.e., TOQ 
and inputs of the multiplier, are given to the ML-based models to predict the 
setting of the approximate design, i.e., Type of approximate components and 
Degree of approximation, which is utilized within an error-resilient application, 
e.g., image processing, in a software-based adaptive approximate execution. 

The flow of the proposed methodology is depicted in Fig. 2. The main steps are 
done once offline. During the online phase, the user specifies the TOQ, where we 
build our models based on normalized error distance (NED) and peak signal-to-
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Fig. 2 A detailed methodology of software-based adaptive approximate design 

noise ratio (PSNR) error metrics. An important design decision is to determine 
the configuration granularity, i.e., how much data to process before re-adapting the 
design, which is termed the window size (N). For example, in image processing 
applications, we select N to be equal to the size of colored components of an image. 
Then based on the length of inputs, i.e., L and N, we determine the number of 
times to reconfigure the design such that the final approximation benefits are still 
significant. After N inputs, a design adaptation is done, if any of the inputs or TOQ 
changes. The first step in such adaptation is input quantization, i.e., specifying the 
corresponding cluster for each input based on its magnitude, since design adaptation 
for every scalar input is impractical. To evaluate the inputs of an approximate design, 
various metrics, such as median, skewness, and kurtosis, have been used [38]. Thus, 
the input magnitude is the most suitable characteristic of design selection. 

3.2 Machine Learning-Based Models 

We developed a forward design-based model, as shown in Fig. 3a. The obtained 
accuracy for this model is 97.6% and 94.5% for PSNR and NED error metrics, 
respectively. Such high efficiency is due to the straightforward nature of the 
problem. However, we target the inverse design of finding the most suitable design 
settings (degree and type) for given inputs (C1 and C2) and error threshold, as shown 
in Fig. 3b.
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Fig. 3 Models for AC quality manager, (a) forward design and (b) inverse design 

Table 1 Accuracy and execution time of DT- and NN-based design selectors 

Model Accuracy Execution time (ms) 

Inputs Output DT NN DT NN 

C1, C2, PSNR Degree 77.8% 82.17% 8.87 18.9 

C1, C2, PSNR, s2=D1 Type 75.5% 66.52% 25.03 18.0 

C1, C2, PSNR, s2=D2 Type 76.1% 70.21% 19.3 9.0 

C1, C2, PSNR, s2=D3 Type 71.3% 73.22% 11.94 18.7 

C1, C2, PSNR, s2=D4 Type 74.1% 59.08% 6.61 7.4 

3.2.1 Decision Tree-Based Design Selector 

Based on the error analysis of the approximate designs [39], we noticed that the error 
magnitude is correlated to the approximation Degree in a more significant manner 
than the design Type. Such correlation is evident in the accuracy of the models, 
where these models have an average accuracy of 77.8% and 74.3% for predicting the 
design Degree and Type, respectively, as shown in Table 1. The time for executing 
the software implementation of these models is very short, i.e., 24.6ms in total with 
8.87ms to predict the design Degree and 15.72ms to predict the design Type. This  
time is negligible compared to the time of running an application, such as image 
blending. 

3.2.2 Neural Network-Based Design Selector 

As shown in Table 1, the model for Degree prediction has an accuracy of 82.17%, 
while the four models for Type prediction have an average accuracy of 67.3%. 
The time for executing the software implementation of these models is short, 
i.e., 32.18ms in total with 18.9ms to predict the design Degree and 13.28ms to 
predict the design Type. This time is negligible compared to the running time of an 
application, such as image processing. Compared to the DT-based model, the NN-
based model has an execution time, which is .1.31× higher than the DT, while its 
average accuracy is almost .0.98× of the accuracy achieved by the DT-based model. 
Next, we evaluate the software implementation of the proposed methodology, which 
utilizes the DT-based design selector. We discard the NN-based design selector due 
to the absence of advantages over DT.
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Fig. 4 Adaptive image/video blending at component level 

3.3 Experimental Results of Image Blending 

Here, we evaluate the effectiveness of the software implementation of the fully 
automated proposed system. We run MATLAB on a machine with 8 GB DRAM 
and an i5 CPU with a speed of 1.8GHz. We assess the proposed methodology based 
on an image blending application, where we use a set of images. The execution time 
is a quality metric, where its overhead is relatively small compared to the original 
applications, as shown in the sequel. 

Image blending in multiplication mode multiplies numerous images to look like 
a single image. For example, blending two-colored videos, each with .Nf frames 
of size . Nr rows by . Nc columns per image, involves a total of 3 . ×Nf × Nr × Nc

pixels. Each image has three colored components/channels, i.e., red, green, and blue, 
where the values of their pixels are expected to differ. A static configuration uses a 
single design of an 8-bit multiplier to perform all multiplications, even when their 
pixels are different. Therefore, for improved output quality, we propose to adapt the 
approximate design per channel as shown in Fig. 4. However, for a video with a set 
of successive frames, e.g., 30 frames per second, the proposed methodology can be 
run for the first frame only since the other frames have very close pixel values. This 
way, the design selector continuously monitors the inputs and efficiently finds the 
most suitable design for each colored component to meet the required TOQ. 

Various metrics, e.g., median, skewness, and kurtosis, have been used in the 
literature to represent the inputs of approximate designs [38]. However, their 
proposed approximate circuits heavily depend on the training data used during the 
approximation process. Since the error magnitude depends on the user inputs, we 
rely on pixel values to select a suitable design. However, setting the configuration
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Table 2 Characteristics of the blended images 

Input 1 (Image1) Input2 (Image2) 

Example (Image1, Image2) Frame characteristic Red Green Blue Red Green Blue 

1 (Frame, City) Average 131 163 175 172 153 130 

Cluster 9 11 11 11 10 9 

2 (Sky, Landscape) Average 121 149 117 160 156 147 

Cluster 8 10 8 11 10 10 

3 (Text, Whale) Average 241 241 241 48 156 212 

Cluster 16 16 16 4 10 14 

4 (Girl, Beach) Average 177 158 140 168 176 172 

Cluster 12 10 9 11 12 11 

5 (Girl, Tree) Average 102 73 40 239 193 118 

Cluster 7 5 3 16 13 8 

granularity at the pixel level is impractical. On the other hand, the design selection 
per colored component is more suitable. 

We compute the average of the pixels of each colored component to determine the 
most suitable design. Two completely different images may have the same average 
of their pixels. Unfortunately, this could result in the same selected approximate 
design. To avoid this scenario, we reduce the configuration granularity by dividing 
the colored component into multiple segments, e.g., four segments. Thus, we use 
various designs, rather than a single design, for each colored component. Next, we 
analyze the results of applying the proposed methodology on a set of ten images. 
The photos of each set are then blended at the component level, as shown in Fig. 4, 
to evaluate the efficiency of the proposed methodology. 

We use a set of ten different images, each of size .Nr × Nc = 250 . × 400 = . 105

pixels, and each image is segmented into three colored components. Table 2 shows 
the average values of the pixels of each colored component and the associated input 
cluster, which are denoted as Average and Cluster, respectively. 

We target 49 different values of TOQ, i.e., PSNR ranges from 17 dB to 65 dB, for 
each blending example. Thus, we run the methodology 245 times, i.e., 5 . × 49. For 
every invocation, based on the corresponding cluster for each input, i.e., C1 and C2, 
and the associated target PSNR, 1 of the 20 used designs is selected and used for 
blending. For illustration purposes, in the sequel, we explain Example5 in detail. As 
shown in Table 2, the  Girl image has a red component with an average of 102, which 
belongs to Cluster 7, i.e., .C1R = 7. Similarly, the Tree image has a red component 
with an average of 239, which belongs to Cluster 16, i.e., .C2R = 16. The green 
components belong to Clusters 5 and 13 (.C1G = 5, .C2G = 13), while the blue 
components belong to Clusters 3 and 8 (.C1B = 3, .C2B = 8). Then, we adapt the 
design by calling the design selector thrice, i.e., once for every colored component, 
assuming TOQ.= 17 dB. The selected designs are used, and the obtained quality is 
.16.9 dB, which is insignificantly less than the TOQ.
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Fig. 5 Obtained output quality for image blending of Set-1 

Accuracy Analysis of Adaptive Design Figure 5 shows the minimum, maximum, 
and average curves of the obtained output quality, each evaluated over five examples 
of image blending. Out of the 245 selected designs, 49 predicted designs are 
violating the TOQ, even insignificantly, i.e., the obtained output quality is below the 
red line. The unsatisfied output quality is attributed mainly to model imperfection. 
The best achievable prediction accuracy is based on the accuracy of the two models 
executed consecutively, i.e., Degree model with 77.8% and Type model with 76.1%. 
The accuracy of our model prediction is 80%, which is in agreement with the 
average accuracy of the DT-based models, as shown in Table 1. 

Execution Time Analysis of Adaptive Design Figure 6 displays the average 
execution time of the 5 examples of image blending evaluated over 20 static designs. 
The shown time is normalized for the execution time of the exact design. All designs 
have a time reduction ranging from 1.8% to 13.6% with an average of 3.96%. For 
the five examples of image blending, we assessed the execution time of the adaptive 
design, where the target PSNR ranges between .17 dB and .65 dB for each case. 
Figure 7 shows the execution time for the 5 examples using the exact design, the 
adaptive design averaged over 49 different TOQ, and the static design averaged over 
20 approximate designs. Design adaptation overhead, which represents the time for 
running the ML-based design selector, is 30.5ms, 93.9ms, 164.6ms, 148.6ms, and 
42.1ms, for the five examples, respectively. Moreover, the five examples have a data 
processing time based on three selected designs per example of 50.90 s, 50.91 s, 
51.10 s, 51.69 s, and 51.04 s, respectively. Thus, for these five examples, the design
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Fig. 6 Normalized execution time for image blending using 20 static designs 

Fig. 7 Execution time of the exact, static, and adaptive design 

adaptation time represents 0.06%, 0.18%, 0.32%, 0.28%, and 0.08% of the total 
execution time, respectively, which is a negligible overhead. 

Energy Analysis of Adaptive Design Designing a library of approximate arith-
metic modules aims to enhance the energy efficiency [13]. To calculate the energy 
consumed by the approximate multiplier to process an image, we use the following 
equation: 

.Energy = Power × Delay × N (1)
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Table 3 Obtained accuracy (PSNR) for various approximate designs 

Application KUL [20] ETM [21] ATCM [40] Adaptive design (proposed) 

Blending Set-1, Ex. 1  24.8 27.9 41.5 61 

Set-1, Ex. 2  29.2 29.1 43.7 61.1 

Set-1, Ex. 3  20.3 24.8 33.1 63 

Set-1, Ex. 4  23 28 38.2 60.7 

Set-1, Ex. 5  27.6 29.4 40.3 61.5 

where Power and Delay are obtained from the synthesis tool and N is the number of 
multiplications required to process an image, which equals 250 .×400 = 105 pixels. 
Design9 multiplier has the highest energy consumption with 2970 pj and a saving of 
896 pj compared to the exact design. Thus, the design adaption overhead of 733.7 pj 
is almost negligible compared to the total minimal energy savings of 89.6 . μj (896 pj 
.×105) obtained by processing a single image. These results validate our lightweight 
design selector. 

Comparison with Related Work We now compare the output accuracy achieved 
by our adaptive design with the precision of two static approximate models based 
on approximate multipliers proposed by Kulkarni et al. [20] and Kyaw et al. [21] 
that have similar structures as the used approximate array multipliers. Moreover, 
we compare the accuracy of our work with a third approximate design based on 
the approximate tree compressor multiplier (ATCM), proposed by Yang et al. [40], 
which is a Wallace tree multiplier. Table 3 shows a summary of the obtained PSNR 
for image blending based on KUL [20], ETM [21], ATCM [40], and the proposed 
adaptive design. The proposed model achieves better output quality than static 
designs due to the ability to select the most suitable design from the approximate 
library. 

3.4 Summary 

For dynamic inputs, an approximate static design may lead to substantial out-
put errors for changing data. Previous work has ignored the consideration of 
the changing inputs to assure the quality of individual outputs. We proposed a 
novel fine-grained input-dependent adaptive approximate design, based on machine 
learning models. Then, we implemented a fully automated toolchain utilizing a DT-
based design selector. The proposed solution considers the inputs in generating the 
training data, building ML-based models, and then adapting the design to satisfy 
the TOQ. The “software” implementation of the proposed methodology, developed, 
provided a negligible delay overhead and was able to satisfy an output accuracy of 
80% to 85.7% for image blending applications. Such quality-assured results come 
at the one-time cost of generating the training data and deploying and evaluating 
the design selector, i.e., a machine learning-based model. With runtime design
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adaptation, the model always identifies and selects the most suitable design for 
controlling the quality loss. 

4 Hardware-Based Adaptive Design of Approximate 
Accelerators 

The software implementation of the proposed adaptive approximate accelerate was 
able to satisfy the required TOQ with a minimum accuracy of 80%. Now, we present 
a hardware implementation of the adaptive approximate accelerator based on a 
field-programmable gate array (FPGA) and utilizing the feature of dynamic partial 
reconfiguration (DPR), with a database of 21 reconfigurable modules. 

An essential advantage of FPGAs is their flexibility, where these devices can be 
configured and reconfigured on-site and at runtime by the user. In 1995, Xilinx 
introduced the concept of partial reconfiguration (PR) in its XC6200 series to 
increase the flexibility of FPGAs by enabling re-programming parts of design at 
runtime while the remaining parts continue operating without interruption [41]. 
The basic assumption of PR is that the device hardware resources can be time-
multiplexed, similar to the ability of a microprocessor to switch tasks. PR eliminates 
the need to reconfigure and re-establish links fully and dramatically improves the 
flexibility that FPGAs offer. PR enables adaptive and self-repairing systems with 
reduced area and dynamic power consumption. 

We propose to dynamically adapt the functionality of the FPGA-based approxi-
mate accelerators using machine learning (ML) and dynamic partial reconfiguration 
(DPR). We utilize the previously proposed DT- and NN-based design selector that 
continually monitors the input data and determines the most suitable approximate 
design and then, accordingly, partially reconfigures the FPGA with the chosen 
approximate design while maintaining the whole error-tolerant application intact. 
The proposed methodology applies to any error-tolerant application where we 
demonstrate its effectiveness using an image processing application. As FPGA 
vendors announced the technical support for the runtime partial reconfiguration, 
such systems are becoming feasible. To our best knowledge, the design framework 
for adaptively changeable approximate functional modules with input awareness 
does not exist. 

4.1 Dynamic Partial Reconfiguration (DPR) 

Field-programmable gate array (FPGA) devices conceptually consist of [42] (i)  
hardware logic (functional) layer which includes flip-flops, lookup tables (LUTs), 
block random-access memory (BRAM), digital signal processing (DSP) blocks, 
routing resources, and switch boxes to connect the hardware components and (ii)
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Fig. 8 Principle of dynamic 
partial reconfiguration on 
Xilinx FPGAs 

configuration memory which stores the FPGA configuration information through a 
binary file called configuration file or bitstream (BIT). Changing the content of the 
bitstream file allows us to improve the functionality of the hardware logic layer. 
Xilinx and Intel (formerly Altera) are the leading manufacturing companies for 
FPGA devices. We use the VC707 evaluation board from Xilinx, which provides 
a hardware environment for developing and evaluating designs targeting the Virtex-
7 XC7VX485T-2FFG1761C FPGA. 

Partial reconfiguration (PR) is the ability to modify portions of the modern 
FPGA logic by downloading partial bitstream files while the remaining parts are 
not altered [43]. PR is a hierarchical and bottom-up approach and is an essential 
enabler for implementing adaptive systems. It can be static or dynamic, where the 
reconfiguration can occur while the FPGA logic is in the reset state or running state, 
respectively [42]. The DPR process consists of two phases: (i) fetching and storing 
the required bitstream files in the flash memory, which is not time-critical, and (ii) 
loading bitstreams into the reconfigurable region through a controller, i.e., internal 
configuration access port (ICAP). Implementing a partially reconfigurable FPGA 
design is similar to implementing multiple non-partial reconfiguration designs that 
share a common logic. Since the device is switching tasks in hardware, it has 
the benefit of both flexibility of software implementation and the performance of 
hardware implementation. However, it is not commonly employed in commercial 
applications [43]. 

Logically, the part that will host the reconfigurable modules (dynamic designs) 
is the dynamic partial reconfigurable region (PRR), which is shared among various 
modules at runtime through multiplexing. Figure 8 illustrates a reconfigurable 
design example on Xilinx FPGAs, with a partially reconfigurable region (PRR) 
A, which is reserved in the overall design layout mapped on the FPGA, with 
three possible partially reconfigurable modules (PRM). During PR, a portion of 
the FPGA needs to keep executing the required tasks, including the reconfiguration 
process. This part of the FPGA is known as the static region, which is configured 
only once at the boot time with a full bitstream. This region will also host static 
parts of the system, such as I/O ports as they can never be physically moved. 
When a hardware (signal) or a software (register write) trigger event occurs, the 
Partial Reconfiguration Controller (PRC) fetches/pulls partial bitstreams from the 
memory/database and delivers them to a configuration port.
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4.2 Machine Learning-Based Models 

Here, we describe the FPGA-based implementation of the design selector based on 
DT and NN models. 

4.2.1 Decision Tree-Based Design Selector 

As described previously, the DT-based models have an average accuracy of 77.8% 
and 74.3% for predicting the design Degree and Type, respectively, as shown in 
Table 1. Time overhead for executing the software implementation of these models 
is around 24.6ms in total, with 8.87ms to predict the design Degree and 15.72ms 
to predict the design Type. This section evaluates the power, area, delay, and energy 
of the FPGA-based implementation of the DT-based design selector. We utilize the 
XC6VLX75T FPGA, which belongs to the Virtex-6 family. The configurable logic 
block (CLB) comprises 2 slices, each containing 4 6-input LUTs and 8 flip-flops, 
for a total of 8 6-input LUTs and 16 flip-flops per CLB. We use Mentor Graphics 
ModelSim [44] for functionality verification. We use Xilinx XPower Analyzer for 
the power calculation based on exhaustive design simulation [45], while for logic 
synthesis, we use the Xilinx Integrated Synthesis Environment (ISE 14.7) tool suite 
[46]. 

The obtained characteristics of the DT-based model are shown in Table 4, 
where the power consumption of the model ranges between 35mW and 44mW. 
This value is insignificant compared to the power consumption of approximate 
multipliers, where these multipliers being selected are used for N inputs. Similarly, 
the introduced area, delay, and energy overhead are amortized by running the 
approximate design for N inputs. The area of the model, represented in terms of 
the number of slice LUTs, is 1099, at maximum. Also, the number of occupied 
slices could reach 452 slices. The worst-case frequency that the model could run 
is 43.65MHz, with a period of 22.91 ns. The designed model could consume a 
maximum energy of 733.7 pj. 

The design selector, which is synthesized only once, is specific for the considered 
set of approximate designs. However, the proposed methodology is applicable 
to other approximate designs as well. The implementation overhead, i.e., power, 
area, delay, and energy, for the DT-based model is insignificant compared to the 
approximate accelerator since it is a simple nesting of if-else statements with a 
maximum depth of 12 to reach a node of a final result. 

4.2.2 Neural Network-Based Design Selector 

Neural networks (NNs) have typically been implemented in software. However, 
recently with the exploding number of embedded devices, the hardware implemen-
tation of NNs is gaining substantial attention. FPGA-based implementation of NN
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is complicated due to a large number of neurons and the calculation of complex 
equations such as activation function [47]. We use the sigmoid function .f (x) as 
an activation function. A piecewise second-order approximation scheme for the 
implementation of the sigmoid function is proposed in [48] as provided by Eq. (2). It  
has inexpensive hardware, i.e., one multiplication, no lookup table, and no addition. 

.f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 x > 4.0

1 − 1
2 (1 − |x|

4 )2, 0 < x ≤ 4.0
1
2 (1 − |x|

4 )2, −4.0 < x ≤ 0

0, x ≤ −4.0

(2) 

As shown in Table 1, we implemented a two-step design selector by predicting 
the design Degree first and then the Type, with an accuracy of 82.17% and 67.3%, 
respectively. The execution time of the NN-based model ranges between 37.6ms 
and 26.3ms, with an average of 32.7ms. 

We implemented the NN-based model on FPGA, and its characteristics, includ-
ing dynamic power consumption, slice LUTs, occupied slices, operating frequency, 
and consumed energy, are shown in Table 4. These values are insignificant when 
compared to the characteristics of approximate multipliers, where these multipliers 
are used for N inputs. However, compared to the DT-based model, the NN-
based model has an execution time, which is 1.31. × higher than the DT, while 
its average accuracy is almost 0.98. × of the accuracy achieved by the DT-based 
model. Moreover, regarding other design metrics, including power, slice LUTs, 
occupied slices, period, and energy, the NN-based model has a value of 8.06. ×, 
13.93. ×, 11.74. ×, 1.61. ×, and 6.8. ×, consecutively, compared with the DT-based 
model. Unexpectedly, the DT-based model is better than the NN-based model in 
all design characteristics, including accuracy and execution time. 

4.3 Adaptive Design Methodology 

Figure 9 shows the FPGA-based methodology for quality assurance of approximate 
computing through design adaptation, inspired by the general methodology shown 
in Fig. 1. In order to utilize the available resources of the FPGA and show the 
benefits of design approximation, we integrate 16 multipliers into an accelerator 
to be used altogether. Figure 10 shows the internal structure for the approximate 
accelerator with 16 multipliers. Each input, i.e., . Ai and . Bi where 16 . ≥ i . ≥ 1, is 
8-bit wide. 

The implemented ML-based models (design selectors) are DT-based only, where 
model training is done once offline, i.e., off-FPGA. Then, the VHDL implemen-
tation of the obtained DT-based model, which is the output of the offline phase, 
is integrated as a functional module within the online phase of the FPGA-based
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Fig. 9 Methodology of hardware-based adaptive approximate design 

Fig. 10 An accelerator with 16 identical approximate multipliers 

adaptive system, as shown in Fig. 11. The proposed FPGA architecture contains a 
set of intellectual property (IP) cores, connected through a standard bus interface. 
The developed approximate accelerator core is with the capability of adjusting 
processing features as commanded by the user to meet the given TOQ. For the 
parallel execution, we utilize the existing block RAM in the Xilinx 7 series FPGAs, 
which have 1030 blocks of 36Kbits. Thus, we store the input data (images) in a 
distributed memory, e.g., save each image of size 16 KByte into 16 memory slots 
each of 1 KByte. Other configurations of the memory are also possible and can be 
selected to match the performance of the processing elements within the accelerator. 

The online phase of the adaptive design, based on the decision tree, is presented 
in Fig. 11, where the annotated numbers, i.e., 1O to 8O, show the flow of its execution 
for image blending application. The target device is xc7vx485tffg1761-2, and the 
evaluation kit is Xilinx Virtex-7 VC707 Platform [49]. The main components are 
the reconfiguration engine, i.e., DT-based design selector, and the reconfigurable 
core (RC), i.e., approximate accelerator. The RC is placed in a well-known partially 
reconfigurable region (PRR) within the programmable logic. 

We evaluate the effectiveness of the proposed methodology for an FPGA-
based adaptive approximate design utilizing DPR. For that, we select an image 
blending application due to its computationally intensive nature and its amenability
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Fig. 11 Methodology of FPGA-based adaptive approximate design—online phase 

to approximation. As a first step, to prove the validity of the proposed design 
adaptation methodology, we evaluate a design without the DPR feature, utilizing the 
exact accelerator as well as 20 approximate accelerators that exist simultaneously, 
based on the proposed methodology. Thus, 21 different accelerators evaluate the 
outputs. Next, based on the inputs and the given TOQ, the design selector chooses 
the output of a specific design, which has been selected based on the DT model. 
Finally, the selected result will be forwarded as the final result of the accelerator. 
The evaluated area and power consumption of such a design are 15. × and 24. × more 
significant than the exact implementation, respectively. 

We use MATLAB to read the images, re-size them to 128 . × 128 pixels, convert 
them to grayscale, and then write them into coefficient (.COE) files. Such files 
contain the image pixels in a format that the Xilinx CORE Generator can read 
and load. We store the images in an FPGA block RAM (BRAM). The design 
evaluates the average of the pixels of each image retrieved from the memory; then, 
the hardware selector decides which reconfigurable module, i.e., bitstream file, to 
load into the reconfigurable region. The full bitstream is stored in flash memory to 
be booted up into the FPGA at power-up. Moreover, the partial bitstreams are stored 
in well-known addresses of the flash memory. 

4.4 Experimental Results 

In the following, we discuss the results of our proposed methodology when 
evaluated on image processing applications. In particular, we present the obtained 
accuracy results along with reports of the area resources utilized by the implemented 
system. 

Accuracy Analysis of the Adaptive Design We evaluate the accuracy of the 
proposed design over 55 examples of image blending. For each example, our TOQ 
(PSNR) ranges from .15 dB to .63 dB. The images we use are from the database of 
“8 Scene Categories Dataset” [50], which is downloadable from [51]. Figure 12 
shows the minimum, maximum, and average curves of the obtained output quality,
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Fig. 12 Obtained output quality for FPGA-based adaptive image blending 

each evaluated over 55 examples. Generally, for image processing applications, the 
quality is typically considered acceptable if PSNR is .30 dB at least and otherwise 
unacceptable [52]. Based on that, the design adaptation methodology has been 
executed 1870 times, while the TOQ has been satisfied 1530 times. Thus, the 
accuracy of our obtained results in Fig. 12 is 81.82%. 

Area Analysis of the Adaptive Design Table 5 shows the primary resources of the 
XC7VX485T-2FFG1761 FPGA [53]. Moreover, it shows the resources required for 
the image blending application utilizing an approximate accelerator, both static and 
adaptive implementation. Design checkpoint files (.DCP) are a snapshot of a design 
at a specific point in the flow, which includes the current netlist, any optimizations 
made during implementation, design constraints, and implementation results. For 
the static implementation, the .DCP file is 430 KByte only, while for the dynamic 
implementation, it is 17411 KByte. This increase in the file size is due to the logic 
which has been added to enable DPR, as well as the 20 different implementations 
for the reconfigurable module (RM). Moreover, the overhead of such logic is shown 
in the increased number of occupied slice LUTs and slice registers. However, 
both static and dynamic implementations have the same size of the bitstream file 
(692 KByte), which is to be downloaded into the FPGA. DPR enables downloading 
the partial bitstream into the FPGA rather than the full bitstream. Thus, downloading 
692 KByte rather than 19799 KByte would be 28.6 . × faster. Since different variable-
size reconfigurable modules will be assigned to the same reconfigurable region,
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Table 5 Area/size of static and adaptive approximate accelerator 

.DCP Slice Slice Bonded Bitstream 

Design file KByte LUTs registers RAMB36 RAMB18 IOB DSPs size (KByte) 

XC7VX485T-
2FFG1761 
FPGA 

– 303600 607200 1030 2060 700 2800 – 

Static design 430 1472 357 235 51 65 0 19799 

Adaptive– 
Top 

17411 12876 15549 235 51 65 0 19799 

Adaptive– 
Exact 
RM 

770 1287 0 0 0 0 0 692 

Adaptive– 
Max Approx 
RM 

647 800 0 0 0 0 0 692 

Adaptive– 
Min Approx 
RM 

458 176 0 0 0 0 0 692 

it must be large enough to fit the biggest one, i.e., the exact accelerator in our 
methodology. 

Table 5 shows the main features of the Xilinx XC7VX485T-2FFG1761 device, 
including the number of slice LUTs, slice registers, and block RAM. The total 
capacity of block RAM is 37080 Kbit, which could be arranged as 1030 blocks 
of size 36Kbit each or 2060 blocks of size 18Kbit each. The reconfigurable module 
(RM) with exact implementation occupies 1287 slice LUTs. However, the number 
of slice LUTs occupied by the RM with approximate implementation varies from 
800 to 176 LUTs. Thus, the area of the approximate RM varies from 62.16% to 
13.68% of the area of the exact RM. Despite all of that, all 21 RMs have the same 
bitstream size of 692KB. 

4.5 Summary 

To ensure the quality of approximation by design adaptation, we described the 
proposed methodology to adapt the architecture of the FPGA-based approximate 
design using dynamic partial reconfiguration. The proposed design with low power, 
reduced area, small delay, and high throughput is based on runtime adaptation for 
changing inputs. For this purpose, we utilized a lightweight and energy-efficient 
design selector built based on decision tree models. Such input-aware design 
selector determines the most suitable approximate architecture which satisfies user-
given quality constraints for specific inputs. Then, the partial bitstream file of the 
selected design is downloaded into the FPGA. Dynamic partial reconfiguration 
allows quickly reconfiguring the FPGA devices without having to reset the complete
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device. The obtained analysis results of the image blending application showed that 
it is possible to satisfy the TOQ with an accuracy of 81.82%, utilizing a partial 
bitstream file that is 28.6. × smaller than the full bitstream. 

5 Conclusions 

Approximate computing has re-emerged as an energy-efficient computing paradigm 
for error-tolerant applications. Thus, it is promising to be within the architecture and 
algorithms of brain-inspired computing, which has massive device parallelism and 
the ability to tolerate unreliable operations. However, there are essential questions 
to be answered before approximate computing can be made a viable solution for 
energy-efficient computing, such as [54] (1) how much to approximate at the 
component level to be able to observe the gains at the system level, (2) how to 
measure the final quality of approximation, and (3) how to maintain the desired 
output quality of an approximate application. 

Toward addressing these challenges, we proposed a methodology that assures the 
quality of approximate computing through design adaptation based on fine-grained 
inputs and user preferences. For that, we designed a lightweight machine learning-
based model, which functions as a design selector, to select the most suitable 
approximate designs to ensure the final quality of the approximation. 

We proposed a novel methodology to generate an adaptive approximate design 
that satisfies user-given quality constraints, based on the applied inputs. For that, 
we have built a machine learning-based model (that functions as a design selector) 
to determine the most suitable approximate design for the applied inputs based on 
the associated error metrics. To solve the design selector model, we used decision 
tree and neural network techniques to select the approximate design that matches 
the closest accuracy for the applied inputs. 

We realized the software and hardware implementations of the proposed method-
ology, with negligible overhead. The obtained analysis results of the image pro-
cessing application showed that it is possible to satisfy the TOQ with accuracy 
ranging from 80% to 85.7% for various error-resilient applications. The FPGA-
based adaptive approximate accelerator with constraints on size, cost, and power 
consumption relies on dynamic partial reconfiguration to assist in satisfying these 
requirements. In summary, the general proposed design adaptation methodology can 
be seen as a basis for automatic quality assurance. It offers a promising solution to 
reduce the approximation error while maintaining approximation benefits. 
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