
Adaptive Approximate Accelerators with
Controlled Quality Using Machine
Learning

Mahmoud Masadeh, Osman Hasan, and Sofiène Tahar

1 Introduction

The ongoing scaling in feature size has caused integrated circuit (IC) behavior
vulnerable to soft errors as well as process, voltage, and temperature variations.
Thus, the challenge of assuring strictly exact computing is increasing [1]. On the
other hand, present-age computing systems are pervasive, portable, embedded, and
mobile, which led to an ever-increasing demand for ultra-low power consumption,
small footprint, and high-performance systems. Such battery-powered systems are
the main pillars of the internet of things (IoT), which do not necessarily need entirely
accurate results.

Approximate computing (AC), known as best-effort computing, is a nascent
computing paradigm that allows us to achieve these objectives by compromising the
arithmetic accuracy [2]. Nowadays, many applications, such as image processing,
multimedia, recognition, machine learning, communication, big data analysis, and
data mining, are error-tolerant and thus can benefit from approximate computing.
These applications exhibit intrinsic error resilience due to the following factors [3]:
(i) redundant and noisy input data, (ii) lack of golden or single output, (iii) imperfect

M. Masadeh (O)
Computer Engineering Department, Yarmouk University, Irbid, Jordan
e-mail: mahmoud.s@yu.edu.jo

O. Hasan
Electrical Engineering Department, National University of Sciences and Technology, Islamabad,
Pakistan
e-mail: osman.hasan@seecs.nust.edu.pk

S. Tahar
Department of Electrical and Computer Engineering, Concordia University Montreal, Montreal,
QC, Canada
e-mail: tahar@ece.concordia.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Liu et al. (eds.), Design and Applications of Emerging Computer Systems,
https://doi.org/10.1007/978-3-031-42478-6_19

501

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42478-6protect T1	extunderscore 19&domain=pdf

 885
46882 a 885 46882 a

mailto:mahmoud.s@yu.edu.jo
mailto:mahmoud.s@yu.edu.jo
mailto:mahmoud.s@yu.edu.jo
mailto:mahmoud.s@yu.edu.jo

 885 51863 a 885 51863 a

mailto:osman.hasan@seecs.nust.edu.pk
mailto:osman.hasan@seecs.nust.edu.pk
mailto:osman.hasan@seecs.nust.edu.pk
mailto:osman.hasan@seecs.nust.edu.pk
mailto:osman.hasan@seecs.nust.edu.pk

 885
56845 a 885 56845 a

mailto:tahar@ece.concordia.ca
mailto:tahar@ece.concordia.ca
mailto:tahar@ece.concordia.ca
https://doi.org/10.1007/978-3-031-42478-6_19
https://doi.org/10.1007/978-3-031-42478-6_19
https://doi.org/10.1007/978-3-031-42478-6_19
https://doi.org/10.1007/978-3-031-42478-6_19
https://doi.org/10.1007/978-3-031-42478-6_19
https://doi.org/10.1007/978-3-031-42478-6_19
https://doi.org/10.1007/978-3-031-42478-6_19
https://doi.org/10.1007/978-3-031-42478-6_19
https://doi.org/10.1007/978-3-031-42478-6_19
https://doi.org/10.1007/978-3-031-42478-6_19
https://doi.org/10.1007/978-3-031-42478-6_19

502 M. Masadeh et al.

perception in the human sense, and (iv) the usage of implementation algorithms with
self-healing and error attenuation patterns.

Different approximation strategies, which fall under the umbrella of approximate
computing, e.g., the voltage over scaling [4], algorithmic approximations [5], and
approximation of basic arithmetic operations [6], have gained a significant research
interest, in both academia and industry, such as IBM [7], Intel [8], and Microsoft
[9]. However, approximate computing is still immature and does not have standards
yet, which poses severe bottlenecks and main challenges. Thus, future work of AC
should be guided by the following general principles to achieve the best efficiency
[3]:

1. Significance-driven approximation: Identifying the approximable parts of an
application or circuit design is a great challenge. Therefore, it is critical to
distinguish the approximable parts with their approximation settings.

2. Measurable notion of approximation quality: Quality specification and verifi-
cation of approximate design are still open challenges, where quality metrics
are application and user-dependent. To quantify approximation errors, various
quality metrics are used.

3. Quality configuration: Error resiliency of applications depends on the applied
inputs and the context in which the outputs are consumed.

4. Asymmetric approximation benefits: It is essential to identify the approximable
components of the design, which reduces the quality insignificantly while
improving efficiency considerably.

For a static approximate design, the approximation error continues during its
operational lifetime. It restricts approximation versatility and results in under- or
over-approximated systems for dynamic input data, causing excessive power usage
and insufficient accuracy, respectively. Given the dynamic nature of the applied
inputs into static approximate designs, errors are the norm rather than the exception
in approximate computing, where the error magnitude depends on the user inputs
[10]. On the other hand, the defined tolerable error threshold, i.e., target output
quality (TOQ), can be dynamically changed. In both cases, errors with a high value
produced by approximate components in an approximate accelerator, even with a
low error rate, have a more significant impact on the quality than those caused by
approximate parts with a small magnitude. This is in line with the notion of fail-
small, fail-rare, or fail-moderate approaches, [11], where error magnitudes and rates
should be restricted to avoid high loss in the output quality. The fail-small technique
allows approximations with low error magnitudes, while the fail-rare technique
allows approximations with low error rates. On the other hand, the fail-moderate
technique allows approximations with moderate error magnitude and moderate error
rate [12]. Thus, the approaches mentioned above limit the design space to prevent
approximations with high error rates and high error magnitudes, where such a
combination degrades the quality loss significantly.

Quality assurance of approximate computing is still missing a mathematical
model for the impact of approximation on the output quality [3]. Toward this goal,
in this chapter, we develop a runtime adaptive approximate accelerator. For that,

Adaptive Approximate Accelerators with Controlled Quality Using Machine Learning 503

we utilize a set of energy-efficient approximate multipliers which we designed in
[13]. The adaptive design is based on fine-grained input data to satisfy a user-
defined target output quality (TOQ) constraint. Design adaptation uses a machine
learning-based design selector to dynamically choose the most suitable approximate
design for runtime data. The target approximate accelerator is implemented with
configurable levels and types of approximate multipliers.

1.1 Approximate Computing Error Metrics

Approximation introduces accuracy as a new design metric. Thus, several
application-dependent error metrics are used to quantify approximation errors
and evaluate design accuracy [14]. For example, considering an approximate design
with two inputs, i.e., X and Y , of n-bit each, where the exact result is (P) and the
approximate result is (. P '), these error metrics include:

• Error Distance (ED): The arithmetic difference between the exact output and the
approximate output for a given input, which is presented by .ED = |P − P '|.

• Error Rate (ER): Also called error probability, which is the percentage of
erroneous outputs among all outputs.

• Mean Error Distance (MED): The average of ED values for a set of outputs
obtained by applying a set of inputs. MED is a useful metric for measuring the
implementation accuracy of multiple-bit circuit design.

• Normalized Error Distance (NED): The normalization of MED by the maxi-
mum result that an exact design can have (.PMax). NED is an invariant metric
independent of the size of the circuit. Therefore, it is used for comparing circuits
of different sizes, and it is expressed as:

• Relative Error Distance (RED): The ratio of ED to the accurate output, which
equals .RED = ED/P .

• Mean Relative Error Distance (MRED): The average value of all possible
relative error distances (RED).

• Mean Square Error (MSE): It is defined as the average of the squared ED values.
• Peak Signal-to-Noise Ratio (PSNR): The peak signal-to-noise ratio is a fidelity
metric used to measure the quality of the output images; it indicates the ratio of
the maximum pixel intensity to the distortion.

The presented metrics are not mutually exclusive, where one application may use
several quality metrics.

1.2 Approximate Accelerators

Hardware accelerators are special hardware, which is devoted for executing fre-
quently called functions. Accelerators are more efficient than software running on

504 M. Masadeh et al.

general-purpose processors. Generally, they are constructed by connecting multiple
simple arithmetic modules. The existing literature has proposed the design of
approximate accelerators using neural networks [15] or approximate functional
units, particularly approximate adders [16] and multipliers [17]. Moreover, several
functionally approximate designs for basic arithmetic modules, including adders
[6], dividers [18], and multipliers [19], have been investigated for their pivotal role
in various applications. These individually designed components are rarely used
alone, especially in computationally intensive error-tolerant applications, which
are amenable to approximation. The optimization of accuracy performance at
the accelerator level has received little or no attention in the previous literature.
Generally, hardware accelerators are constructed by connecting multiple simple
arithmetic modules. For example, discrete Fourier transform (DFT) and discrete
cosine transform (DCT) modules are used in signal and image processing. Approx-
imate multipliers and multiply-accumulate units (MACs) are intensively used to
build approximate accelerators.

Multipliers are one of the most foundational components for most functions
and algorithms in classical computing. However, they are the most energy-costly
units compared to other essential CPU functions such as register shifts or binary
logical operators. Thus, their approximation would introduce an enhancement in
their performance and energy, which automatically induces crucial benefits for the
whole application. Approximate multipliers have been mainly designed using three
techniques:

(i) Approximation in partial product generation: For example, Kulkarni et al. [20]
proposed an approximate .2 × 2 binary multiplier at the gate level by changing
a single entry in the Karnaugh map with an error rate of .1/16.

(ii) Approximation in partial product tree: For example, error-tolerant multipliers
(ETM) [21] divide the input operands into two parts, i.e., the multiplication part
for the MSBs and the non-multiplication part for the LSBs, thus omitting the
generation of some partial products [19].

(iii) Approximation in partial product summation: Approximate full adder (FA)
cells are used to form an array multiplier, e.g., in [22], the approximate mirror
adder has been used to develop a multiplier.

We focus on array multipliers, which are not the fastest neither the smallest.
Their short wiring gives them a periodic structure with a compact hardware layout.
Thus, they are one of the most used in embedded system on chip (SoC). In [23]
and [24], we designed various 8- and 16-bit approximate array multipliers based on
approximation in partial product summation.

1.3 Quality Control of Approximate Accelerators

Managing the quality of approximate hardware designs for dynamically changing
inputs has substantial significance to guarantee that the obtained results satisfy

Adaptive Approximate Accelerators with Controlled Quality Using Machine Learning 505

the required target output quality (TOQ). To the best of our knowledge, there are
very few works targeting the assurance of the accuracy of approximate systems
compared to designing approximate components. While most prior works focus on
error prediction, we propose to overcome the approximation error through an input-
dependent self-adaptation of design.

Mainly, there are two approaches for monitoring and controlling the accuracy
of the results of approximate accelerators at runtime. The first approach suggests
to periodically, through sampling techniques, measure the error of an accelerator
through comparing its outcome with the exact computation performed by the host
processor. Then, a re-calibration and adjustment process is performed to improve
the quality in subsequent invocations of the accelerator if the error is found to
be above a defined range, e.g., Green [25] and SAGE [26]. However, the quality
of unchecked invocations cannot be ensured, and the previous quality violations
cannot be compensated. The second approach relies on implementing lightweight
pre-trained error predictors to expect if the invocation of an approximate accelerator
would produce an unacceptable error for a particular input dataset [27, 28].

However, the works [25–27], and [28] mainly target controlling software approx-
imation, i.e., loops and functions approximation, through program re-execution
and thus are not applicable for hardware designs. Moreover, they ignore input
dependencies and do not consider choosing an adequate design from a set of design
choices. Overall, none of these state-of-the-art techniques exploits the potential
of different settings of approximate computing and their adaptations based on a
user-specified quality constraint to ensure the accuracy of the individual outputs,
which is the main idea we propose. Design adaptation could be implemented in
software-based systems by having different versions of the approximate code, while
hardware-based systems rely on having various implementations for the functional
units. However, concurrently having such functional units diminishes approximation
benefits. Thus, dynamic partial reconfiguration (DPR) could be used to have only a
single implementation of the design at any instance of time.

2 Proposed Methodology

We aim to assure the quality of approximation by design adaptation by predicting
the most suitable settings of the approximate design to execute the inputs. The
proposed method predicts the design settings based on the applied input data and
user preferences, without losing the gains of approximations. We mostly consider
the case of approximate accelerators built with approximate functional units such as
approximate multipliers.

We propose a comprehensive methodology that handles the limitations of the
current state of the art in terms of fine-grained input dependency, suitability
for various approximate modules (e.g., adders, dividers, and multipliers), and
applicability to both hardware and software implementations. Figure 1 provides a
general overview of the proposed methodology for design adaptation. As shown in

506 M. Masadeh et al.

Fig. 1 General overview of the proposed methodology

the figure, the methodology includes two phases: (1) The first is an offline phase,
which is executed once for building a machine learning-based model. Such a model
predicts the design settings. (2) The second is an online stage, where the machine
learning-based model constantly accepts inputs and predicts accordingly based on
the runtime inputs. The proposed methodology encompasses the following main
steps:

(1) Building a library of approximate designs: The first step is designing the library
of basic functional units, such as adders, multipliers, and dividers, with different
settings, which will be integrated into a quality-assured approximate design.
The characteristics of each design, e.g., accuracy, area, power, delay, and energy
consumption, should be evaluated to highlight the benefits of approximation.

(2) Building a machine learning-based model: In the offline phase, we use super-
vised learning and employ decision trees (DT) and neural network (NN)
algorithms to build a model to predict the unseen data, e.g., the design
settings. This step incorporates generating and pre-processing the training data,
such as quantization, sampling, and reduction. The training inputs are applied
exhaustively to an approximate design to create the training data. For n-bit
designs with two inputs, the size of the input combinations is . 22n.

(3) Predicting the approximation settings: In the online phase, the user-specified
runtime inputs, i.e., the target output quality (TOQ) and the inputs of the approx-
imate design, are given to the ML-based models to predict approximation-
related output, i.e., setting of the adaptive design. The implemented ML-based
model should be lightweight, i.e., have a high prediction accuracy with fast
execution.

(4) Integrating the approximate accelerator into error-resilient applications: For
adaptive design, the approximate accelerator, which has been nominated by the
ML-based model, is adapted within an error-resilient application. Such design

Adaptive Approximate Accelerators with Controlled Quality Using Machine Learning 507

could be implemented in software (off-field-programmable gate array (FPGA),
as explained in Sect. 3) or in hardware (on-FPGA, as described in Sect. 4).

Approximation approaches demand a quality assurance to adjust approximation
settings/knobs and monitor the quality of fine-grained individual outputs. There are
two approaches to adjusting the settings of an approximate program to ensure the
quality of results:

(i) Forward design [29], which sets the design knobs and then observes the quality
of results. However, the output quality of some inputs may reach unacceptable
levels.

(ii) Backward design [30], which tries to locate the optimal knob setting for a given
bound of output quality; this requires examining a large space of knob settings
for a given input, which is unmanageable.

We present an adaptive approximate design that allows altering the settings of
approximation, at runtime to meet the preferred output quality. The principal idea is
to generate a machine learning-based input-aware design selector, which can adjust
the approximate design based on the applied inputs, to meet the required quality
constraints. Our technique is general in terms of quality metrics and supported
approximate designs. It is primarily based on a library of 8- and 16-bit approximate
multipliers with 20 different configurations and well-known power dissipation,
performance, and accuracy profiles [13]. Moreover, we utilize a backward design
approach to dynamically adjust the design to satisfy the desired target output quality
(TOQ) based on machine learning (ML) models. The TOQ is a user-defined quality
constraint, which represents the maximum permissible error for a given application.
The proposed design flow is adaptable, i.e., applicable to approximate functional
units other than multipliers, e.g., approximate multiply-accumulate units [31] and
approximate meta-functions [32].

2.1 Machine Learning-Based Models

ML-based algorithms find solutions by learning through training data [33]. Super-
vised learning allows for a rapid, flexible, and scalable way to develop accurate
models that are specific to the set of application inputs and TOQ. The error for an
approximate design with particular settings can be predicted based on the applied
inputs. In [34], we designed and evaluated various ML-based models, based on
the analyzed data and several algorithms, developed in the statistical computing
language R. These models express the design selector for the adaptive design.
Linear regression (LR) models were found to be the simplest to develop; however,
their accuracy is the lowest, i.e., around 7%. Thus, they are not suitable for our
proposed methodology. On the other hand, decision tree (DT) models based on both
C5.0 and rpart algorithms achieve an accuracy of up to 64%, while random forest
(RF) models, with an overhead of 25 decision trees, achieve an accuracy of up to

508 M. Masadeh et al.

68%. The most accurate models are based on neural networks, but they suffer from
long development time, design complexity, and high-energy overhead [27]. In this
work, we implement and evaluate two versions of the design selector, based on
decision tree and neural network models. Accordingly, we identify and select the
most suitable one to implement in our methodology.

2.1.1 Decision Tree-Based Design Selector

The DT algorithm uses a flowchart-like tree layout to partition data into various
predefined classes, thereby providing the description, categorization, and general-
ization of the given datasets [35]. Unlike the linear model, it models non-linear
relationships quite well. Thus, it is used in a wide range of applications, such as
credit risk of loans and medical diagnosis [36]. Decision trees are usually employed
for classification over datasets, through recursively partitioning the data, such that
observations with the same label are grouped [36].

Generally speaking, a decision tree model could be replaced by a lookup table
(LUT) which contains all the training data that are used to build the DT model [34].
When searching the LUTs, we could use the first matched value, i.e., design settings
that satisfy the TOQ, which could be a better solution obtained with a little search
effort. For DT-based models, we do not need to specify which value to retrieve.
However, it is possible to obtain a result which is closer to the TOQ by changing
the settings of the tree such as (1) the maximum depth of any node of the tree,
(2) the minimum number of observations that must exist in a node in order for a
split to be attempted, and (3) the minimum number of observations in any terminal
node. In general, for embedded and limited resource systems, a lookup table is not a
viable solution if the number of entries becomes very large [37]. In fact, for a circuit
with two 16-bit inputs, we need to generate . 232 input patterns to cover all possible
scenarios of a circuit.

2.1.2 Neural Network-Based Design Selector

We implemented a two-step NN-based design selector by predicting the design
Degree first (how much to approximate) and then the Type (which approximate full
adder to use). The model for Degree prediction has an accuracy of 82.17%, while the
four models for Type prediction have an average accuracy of 67.3%. These models
have a single hidden layer with a sigmoid activation function.

3 Software-Based Adaptive Design of Approximate
Accelerators

We present a detailed description of the proposed methodology for designing adap-
tive approximate accelerators, where the proposed design can be implementable

Adaptive Approximate Accelerators with Controlled Quality Using Machine Learning 509

in both software and hardware. This section shows the aspects of software-based
implementation. Section 4 is devoted to the FPGA-based hardware implementation.

3.1 Adaptive Design Methodology

As shown in Fig. 2, the proposed methodology contains two phases: (1) an offline
stage, where we build an ML-based model, and (2) an online stage, where we use
the ML-based model based on the inputs to anticipate the settings of the adaptive
design. The detailed steps of the presented methodology are:

(1) Generating of Training Data: Inputs are applied exhaustively to the approximate
library to create the training data for building the ML-based model (design
selector). For 8- and 16-bit designs, the size of the input combinations is . 216 and
. 232, respectively. Thus, a sampling of the training data could be used because it
is impossible to generate an exhaustive training dataset for large circuits.

(2) Clustering/Quantizing of Training Data: Evaluating the design accuracy for a
single input can provide the error distance (ED) metric only. However, mean
error metrics (e.g., mean square error (MSE), peak signal-to-noise ratio (PSNR),
and normalized error distance (NED)) are evaluated over a set of successively
applied data rather than a scalar input. Thus, inputs with a specific distance from
each other are considered a single cluster with the same estimated error metric.
We propose to cluster every 16 consecutive input values. Based on that, each
input for an 8-bit multiplier encompasses 16 clusters rather than 256 inputs.
Similarly, for the 16-bit multiplier design, the number of clustered inputs is
reduced to . 224 rather than . 232.

(3) Pre-processing of Training Data: Inputs could be applied exhaustively for small
circuits, e.g., 8-bit multipliers. However, the size of the input combinations
for 16- and 32-bit designs is significant. Therefore, we have to reduce the
size of the training data through sampling approaches to design a smaller and
more efficient ML-based model. Moreover, for 16-bit designs, we prioritize the
training data based on their area, power, and delay as well as accuracy and then
reduce the training data accordingly.

(4) Building of Machine Learning-Based Model: We built decision trees and neural
network-based models, which act as design selectors, to predict the most
suitable settings of the design based on the applied inputs.

(5) Selection of Approximate Design: In the online phase, the user inputs, i.e., TOQ
and inputs of the multiplier, are given to the ML-based models to predict the
setting of the approximate design, i.e., Type of approximate components and
Degree of approximation, which is utilized within an error-resilient application,
e.g., image processing, in a software-based adaptive approximate execution.

The flow of the proposed methodology is depicted in Fig. 2. The main steps are
done once offline. During the online phase, the user specifies the TOQ, where we
build our models based on normalized error distance (NED) and peak signal-to-

510 M. Masadeh et al.

Fig. 2 A detailed methodology of software-based adaptive approximate design

noise ratio (PSNR) error metrics. An important design decision is to determine
the configuration granularity, i.e., how much data to process before re-adapting the
design, which is termed the window size (N). For example, in image processing
applications, we select N to be equal to the size of colored components of an image.
Then based on the length of inputs, i.e., L and N, we determine the number of
times to reconfigure the design such that the final approximation benefits are still
significant. After N inputs, a design adaptation is done, if any of the inputs or TOQ
changes. The first step in such adaptation is input quantization, i.e., specifying the
corresponding cluster for each input based on its magnitude, since design adaptation
for every scalar input is impractical. To evaluate the inputs of an approximate design,
various metrics, such as median, skewness, and kurtosis, have been used [38]. Thus,
the input magnitude is the most suitable characteristic of design selection.

3.2 Machine Learning-Based Models

We developed a forward design-based model, as shown in Fig. 3a. The obtained
accuracy for this model is 97.6% and 94.5% for PSNR and NED error metrics,
respectively. Such high efficiency is due to the straightforward nature of the
problem. However, we target the inverse design of finding the most suitable design
settings (degree and type) for given inputs (C1 and C2) and error threshold, as shown
in Fig. 3b.

Adaptive Approximate Accelerators with Controlled Quality Using Machine Learning 511

Fig. 3 Models for AC quality manager, (a) forward design and (b) inverse design

Table 1 Accuracy and execution time of DT- and NN-based design selectors

Model Accuracy Execution time (ms)

Inputs Output DT NN DT NN

C1, C2, PSNR Degree 77.8% 82.17% 8.87 18.9

C1, C2, PSNR, s2=D1 Type 75.5% 66.52% 25.03 18.0

C1, C2, PSNR, s2=D2 Type 76.1% 70.21% 19.3 9.0

C1, C2, PSNR, s2=D3 Type 71.3% 73.22% 11.94 18.7

C1, C2, PSNR, s2=D4 Type 74.1% 59.08% 6.61 7.4

3.2.1 Decision Tree-Based Design Selector

Based on the error analysis of the approximate designs [39], we noticed that the error
magnitude is correlated to the approximation Degree in a more significant manner
than the design Type. Such correlation is evident in the accuracy of the models,
where these models have an average accuracy of 77.8% and 74.3% for predicting the
design Degree and Type, respectively, as shown in Table 1. The time for executing
the software implementation of these models is very short, i.e., 24.6ms in total with
8.87ms to predict the design Degree and 15.72ms to predict the design Type. This
time is negligible compared to the time of running an application, such as image
blending.

3.2.2 Neural Network-Based Design Selector

As shown in Table 1, the model for Degree prediction has an accuracy of 82.17%,
while the four models for Type prediction have an average accuracy of 67.3%.
The time for executing the software implementation of these models is short,
i.e., 32.18ms in total with 18.9ms to predict the design Degree and 13.28ms to
predict the design Type. This time is negligible compared to the running time of an
application, such as image processing. Compared to the DT-based model, the NN-
based model has an execution time, which is .1.31× higher than the DT, while its
average accuracy is almost .0.98× of the accuracy achieved by the DT-based model.
Next, we evaluate the software implementation of the proposed methodology, which
utilizes the DT-based design selector. We discard the NN-based design selector due
to the absence of advantages over DT.

512 M. Masadeh et al.

Image decomposition

Image decomposition

Image composition

Design Selector

Frame Blending
&

Design Selector

Frame Blending
&

Design Selector

Frame Blending
&

Fig. 4 Adaptive image/video blending at component level

3.3 Experimental Results of Image Blending

Here, we evaluate the effectiveness of the software implementation of the fully
automated proposed system. We run MATLAB on a machine with 8 GB DRAM
and an i5 CPU with a speed of 1.8GHz. We assess the proposed methodology based
on an image blending application, where we use a set of images. The execution time
is a quality metric, where its overhead is relatively small compared to the original
applications, as shown in the sequel.

Image blending in multiplication mode multiplies numerous images to look like
a single image. For example, blending two-colored videos, each with .Nf frames
of size . Nr rows by . Nc columns per image, involves a total of 3 . ×Nf × Nr × Nc

pixels. Each image has three colored components/channels, i.e., red, green, and blue,
where the values of their pixels are expected to differ. A static configuration uses a
single design of an 8-bit multiplier to perform all multiplications, even when their
pixels are different. Therefore, for improved output quality, we propose to adapt the
approximate design per channel as shown in Fig. 4. However, for a video with a set
of successive frames, e.g., 30 frames per second, the proposed methodology can be
run for the first frame only since the other frames have very close pixel values. This
way, the design selector continuously monitors the inputs and efficiently finds the
most suitable design for each colored component to meet the required TOQ.

Various metrics, e.g., median, skewness, and kurtosis, have been used in the
literature to represent the inputs of approximate designs [38]. However, their
proposed approximate circuits heavily depend on the training data used during the
approximation process. Since the error magnitude depends on the user inputs, we
rely on pixel values to select a suitable design. However, setting the configuration

Adaptive Approximate Accelerators with Controlled Quality Using Machine Learning 513

Table 2 Characteristics of the blended images

Input 1 (Image1) Input2 (Image2)

Example (Image1, Image2) Frame characteristic Red Green Blue Red Green Blue

1 (Frame, City) Average 131 163 175 172 153 130

Cluster 9 11 11 11 10 9

2 (Sky, Landscape) Average 121 149 117 160 156 147

Cluster 8 10 8 11 10 10

3 (Text, Whale) Average 241 241 241 48 156 212

Cluster 16 16 16 4 10 14

4 (Girl, Beach) Average 177 158 140 168 176 172

Cluster 12 10 9 11 12 11

5 (Girl, Tree) Average 102 73 40 239 193 118

Cluster 7 5 3 16 13 8

granularity at the pixel level is impractical. On the other hand, the design selection
per colored component is more suitable.

We compute the average of the pixels of each colored component to determine the
most suitable design. Two completely different images may have the same average
of their pixels. Unfortunately, this could result in the same selected approximate
design. To avoid this scenario, we reduce the configuration granularity by dividing
the colored component into multiple segments, e.g., four segments. Thus, we use
various designs, rather than a single design, for each colored component. Next, we
analyze the results of applying the proposed methodology on a set of ten images.
The photos of each set are then blended at the component level, as shown in Fig. 4,
to evaluate the efficiency of the proposed methodology.

We use a set of ten different images, each of size .Nr × Nc = 250 . × 400 = . 105

pixels, and each image is segmented into three colored components. Table 2 shows
the average values of the pixels of each colored component and the associated input
cluster, which are denoted as Average and Cluster, respectively.

We target 49 different values of TOQ, i.e., PSNR ranges from 17 dB to 65 dB, for
each blending example. Thus, we run the methodology 245 times, i.e., 5 . × 49. For
every invocation, based on the corresponding cluster for each input, i.e., C1 and C2,
and the associated target PSNR, 1 of the 20 used designs is selected and used for
blending. For illustration purposes, in the sequel, we explain Example5 in detail. As
shown in Table 2, the Girl image has a red component with an average of 102, which
belongs to Cluster 7, i.e., .C1R = 7. Similarly, the Tree image has a red component
with an average of 239, which belongs to Cluster 16, i.e., .C2R = 16. The green
components belong to Clusters 5 and 13 (.C1G = 5, .C2G = 13), while the blue
components belong to Clusters 3 and 8 (.C1B = 3, .C2B = 8). Then, we adapt the
design by calling the design selector thrice, i.e., once for every colored component,
assuming TOQ.= 17 dB. The selected designs are used, and the obtained quality is
.16.9 dB, which is insignificantly less than the TOQ.

514 M. Masadeh et al.

Fig. 5 Obtained output quality for image blending of Set-1

Accuracy Analysis of Adaptive Design Figure 5 shows the minimum, maximum,
and average curves of the obtained output quality, each evaluated over five examples
of image blending. Out of the 245 selected designs, 49 predicted designs are
violating the TOQ, even insignificantly, i.e., the obtained output quality is below the
red line. The unsatisfied output quality is attributed mainly to model imperfection.
The best achievable prediction accuracy is based on the accuracy of the two models
executed consecutively, i.e., Degree model with 77.8% and Type model with 76.1%.
The accuracy of our model prediction is 80%, which is in agreement with the
average accuracy of the DT-based models, as shown in Table 1.

Execution Time Analysis of Adaptive Design Figure 6 displays the average
execution time of the 5 examples of image blending evaluated over 20 static designs.
The shown time is normalized for the execution time of the exact design. All designs
have a time reduction ranging from 1.8% to 13.6% with an average of 3.96%. For
the five examples of image blending, we assessed the execution time of the adaptive
design, where the target PSNR ranges between .17 dB and .65 dB for each case.
Figure 7 shows the execution time for the 5 examples using the exact design, the
adaptive design averaged over 49 different TOQ, and the static design averaged over
20 approximate designs. Design adaptation overhead, which represents the time for
running the ML-based design selector, is 30.5ms, 93.9ms, 164.6ms, 148.6ms, and
42.1ms, for the five examples, respectively. Moreover, the five examples have a data
processing time based on three selected designs per example of 50.90 s, 50.91 s,
51.10 s, 51.69 s, and 51.04 s, respectively. Thus, for these five examples, the design

Adaptive Approximate Accelerators with Controlled Quality Using Machine Learning 515

Fig. 6 Normalized execution time for image blending using 20 static designs

Fig. 7 Execution time of the exact, static, and adaptive design

adaptation time represents 0.06%, 0.18%, 0.32%, 0.28%, and 0.08% of the total
execution time, respectively, which is a negligible overhead.

Energy Analysis of Adaptive Design Designing a library of approximate arith-
metic modules aims to enhance the energy efficiency [13]. To calculate the energy
consumed by the approximate multiplier to process an image, we use the following
equation:

.Energy = Power × Delay × N (1)

516 M. Masadeh et al.

Table 3 Obtained accuracy (PSNR) for various approximate designs

Application KUL [20] ETM [21] ATCM [40] Adaptive design (proposed)

Blending Set-1, Ex. 1 24.8 27.9 41.5 61

Set-1, Ex. 2 29.2 29.1 43.7 61.1

Set-1, Ex. 3 20.3 24.8 33.1 63

Set-1, Ex. 4 23 28 38.2 60.7

Set-1, Ex. 5 27.6 29.4 40.3 61.5

where Power and Delay are obtained from the synthesis tool and N is the number of
multiplications required to process an image, which equals 250 .×400 = 105 pixels.
Design9 multiplier has the highest energy consumption with 2970 pj and a saving of
896 pj compared to the exact design. Thus, the design adaption overhead of 733.7 pj
is almost negligible compared to the total minimal energy savings of 89.6 . μj (896 pj
.×105) obtained by processing a single image. These results validate our lightweight
design selector.

Comparison with Related Work We now compare the output accuracy achieved
by our adaptive design with the precision of two static approximate models based
on approximate multipliers proposed by Kulkarni et al. [20] and Kyaw et al. [21]
that have similar structures as the used approximate array multipliers. Moreover,
we compare the accuracy of our work with a third approximate design based on
the approximate tree compressor multiplier (ATCM), proposed by Yang et al. [40],
which is a Wallace tree multiplier. Table 3 shows a summary of the obtained PSNR
for image blending based on KUL [20], ETM [21], ATCM [40], and the proposed
adaptive design. The proposed model achieves better output quality than static
designs due to the ability to select the most suitable design from the approximate
library.

3.4 Summary

For dynamic inputs, an approximate static design may lead to substantial out-
put errors for changing data. Previous work has ignored the consideration of
the changing inputs to assure the quality of individual outputs. We proposed a
novel fine-grained input-dependent adaptive approximate design, based on machine
learning models. Then, we implemented a fully automated toolchain utilizing a DT-
based design selector. The proposed solution considers the inputs in generating the
training data, building ML-based models, and then adapting the design to satisfy
the TOQ. The “software” implementation of the proposed methodology, developed,
provided a negligible delay overhead and was able to satisfy an output accuracy of
80% to 85.7% for image blending applications. Such quality-assured results come
at the one-time cost of generating the training data and deploying and evaluating
the design selector, i.e., a machine learning-based model. With runtime design

Adaptive Approximate Accelerators with Controlled Quality Using Machine Learning 517

adaptation, the model always identifies and selects the most suitable design for
controlling the quality loss.

4 Hardware-Based Adaptive Design of Approximate
Accelerators

The software implementation of the proposed adaptive approximate accelerate was
able to satisfy the required TOQ with a minimum accuracy of 80%. Now, we present
a hardware implementation of the adaptive approximate accelerator based on a
field-programmable gate array (FPGA) and utilizing the feature of dynamic partial
reconfiguration (DPR), with a database of 21 reconfigurable modules.

An essential advantage of FPGAs is their flexibility, where these devices can be
configured and reconfigured on-site and at runtime by the user. In 1995, Xilinx
introduced the concept of partial reconfiguration (PR) in its XC6200 series to
increase the flexibility of FPGAs by enabling re-programming parts of design at
runtime while the remaining parts continue operating without interruption [41].
The basic assumption of PR is that the device hardware resources can be time-
multiplexed, similar to the ability of a microprocessor to switch tasks. PR eliminates
the need to reconfigure and re-establish links fully and dramatically improves the
flexibility that FPGAs offer. PR enables adaptive and self-repairing systems with
reduced area and dynamic power consumption.

We propose to dynamically adapt the functionality of the FPGA-based approxi-
mate accelerators using machine learning (ML) and dynamic partial reconfiguration
(DPR). We utilize the previously proposed DT- and NN-based design selector that
continually monitors the input data and determines the most suitable approximate
design and then, accordingly, partially reconfigures the FPGA with the chosen
approximate design while maintaining the whole error-tolerant application intact.
The proposed methodology applies to any error-tolerant application where we
demonstrate its effectiveness using an image processing application. As FPGA
vendors announced the technical support for the runtime partial reconfiguration,
such systems are becoming feasible. To our best knowledge, the design framework
for adaptively changeable approximate functional modules with input awareness
does not exist.

4.1 Dynamic Partial Reconfiguration (DPR)

Field-programmable gate array (FPGA) devices conceptually consist of [42] (i)
hardware logic (functional) layer which includes flip-flops, lookup tables (LUTs),
block random-access memory (BRAM), digital signal processing (DSP) blocks,
routing resources, and switch boxes to connect the hardware components and (ii)

518 M. Masadeh et al.

Fig. 8 Principle of dynamic
partial reconfiguration on
Xilinx FPGAs

configuration memory which stores the FPGA configuration information through a
binary file called configuration file or bitstream (BIT). Changing the content of the
bitstream file allows us to improve the functionality of the hardware logic layer.
Xilinx and Intel (formerly Altera) are the leading manufacturing companies for
FPGA devices. We use the VC707 evaluation board from Xilinx, which provides
a hardware environment for developing and evaluating designs targeting the Virtex-
7 XC7VX485T-2FFG1761C FPGA.

Partial reconfiguration (PR) is the ability to modify portions of the modern
FPGA logic by downloading partial bitstream files while the remaining parts are
not altered [43]. PR is a hierarchical and bottom-up approach and is an essential
enabler for implementing adaptive systems. It can be static or dynamic, where the
reconfiguration can occur while the FPGA logic is in the reset state or running state,
respectively [42]. The DPR process consists of two phases: (i) fetching and storing
the required bitstream files in the flash memory, which is not time-critical, and (ii)
loading bitstreams into the reconfigurable region through a controller, i.e., internal
configuration access port (ICAP). Implementing a partially reconfigurable FPGA
design is similar to implementing multiple non-partial reconfiguration designs that
share a common logic. Since the device is switching tasks in hardware, it has
the benefit of both flexibility of software implementation and the performance of
hardware implementation. However, it is not commonly employed in commercial
applications [43].

Logically, the part that will host the reconfigurable modules (dynamic designs)
is the dynamic partial reconfigurable region (PRR), which is shared among various
modules at runtime through multiplexing. Figure 8 illustrates a reconfigurable
design example on Xilinx FPGAs, with a partially reconfigurable region (PRR)
A, which is reserved in the overall design layout mapped on the FPGA, with
three possible partially reconfigurable modules (PRM). During PR, a portion of
the FPGA needs to keep executing the required tasks, including the reconfiguration
process. This part of the FPGA is known as the static region, which is configured
only once at the boot time with a full bitstream. This region will also host static
parts of the system, such as I/O ports as they can never be physically moved.
When a hardware (signal) or a software (register write) trigger event occurs, the
Partial Reconfiguration Controller (PRC) fetches/pulls partial bitstreams from the
memory/database and delivers them to a configuration port.

Adaptive Approximate Accelerators with Controlled Quality Using Machine Learning 519

4.2 Machine Learning-Based Models

Here, we describe the FPGA-based implementation of the design selector based on
DT and NN models.

4.2.1 Decision Tree-Based Design Selector

As described previously, the DT-based models have an average accuracy of 77.8%
and 74.3% for predicting the design Degree and Type, respectively, as shown in
Table 1. Time overhead for executing the software implementation of these models
is around 24.6ms in total, with 8.87ms to predict the design Degree and 15.72ms
to predict the design Type. This section evaluates the power, area, delay, and energy
of the FPGA-based implementation of the DT-based design selector. We utilize the
XC6VLX75T FPGA, which belongs to the Virtex-6 family. The configurable logic
block (CLB) comprises 2 slices, each containing 4 6-input LUTs and 8 flip-flops,
for a total of 8 6-input LUTs and 16 flip-flops per CLB. We use Mentor Graphics
ModelSim [44] for functionality verification. We use Xilinx XPower Analyzer for
the power calculation based on exhaustive design simulation [45], while for logic
synthesis, we use the Xilinx Integrated Synthesis Environment (ISE 14.7) tool suite
[46].

The obtained characteristics of the DT-based model are shown in Table 4,
where the power consumption of the model ranges between 35mW and 44mW.
This value is insignificant compared to the power consumption of approximate
multipliers, where these multipliers being selected are used for N inputs. Similarly,
the introduced area, delay, and energy overhead are amortized by running the
approximate design for N inputs. The area of the model, represented in terms of
the number of slice LUTs, is 1099, at maximum. Also, the number of occupied
slices could reach 452 slices. The worst-case frequency that the model could run
is 43.65MHz, with a period of 22.91 ns. The designed model could consume a
maximum energy of 733.7 pj.

The design selector, which is synthesized only once, is specific for the considered
set of approximate designs. However, the proposed methodology is applicable
to other approximate designs as well. The implementation overhead, i.e., power,
area, delay, and energy, for the DT-based model is insignificant compared to the
approximate accelerator since it is a simple nesting of if-else statements with a
maximum depth of 12 to reach a node of a final result.

4.2.2 Neural Network-Based Design Selector

Neural networks (NNs) have typically been implemented in software. However,
recently with the exploding number of embedded devices, the hardware implemen-
tation of NNs is gaining substantial attention. FPGA-based implementation of NN

520 M. Masadeh et al.

is complicated due to a large number of neurons and the calculation of complex
equations such as activation function [47]. We use the sigmoid function .f (x) as
an activation function. A piecewise second-order approximation scheme for the
implementation of the sigmoid function is proposed in [48] as provided by Eq. (2). It
has inexpensive hardware, i.e., one multiplication, no lookup table, and no addition.

.f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 x > 4.0

1 − 1
2 (1 − |x|

4)2, 0 < x ≤ 4.0
1
2 (1 − |x|

4)2, −4.0 < x ≤ 0

0, x ≤ −4.0

(2)

As shown in Table 1, we implemented a two-step design selector by predicting
the design Degree first and then the Type, with an accuracy of 82.17% and 67.3%,
respectively. The execution time of the NN-based model ranges between 37.6ms
and 26.3ms, with an average of 32.7ms.

We implemented the NN-based model on FPGA, and its characteristics, includ-
ing dynamic power consumption, slice LUTs, occupied slices, operating frequency,
and consumed energy, are shown in Table 4. These values are insignificant when
compared to the characteristics of approximate multipliers, where these multipliers
are used for N inputs. However, compared to the DT-based model, the NN-
based model has an execution time, which is 1.31. × higher than the DT, while
its average accuracy is almost 0.98. × of the accuracy achieved by the DT-based
model. Moreover, regarding other design metrics, including power, slice LUTs,
occupied slices, period, and energy, the NN-based model has a value of 8.06. ×,
13.93. ×, 11.74. ×, 1.61. ×, and 6.8. ×, consecutively, compared with the DT-based
model. Unexpectedly, the DT-based model is better than the NN-based model in
all design characteristics, including accuracy and execution time.

4.3 Adaptive Design Methodology

Figure 9 shows the FPGA-based methodology for quality assurance of approximate
computing through design adaptation, inspired by the general methodology shown
in Fig. 1. In order to utilize the available resources of the FPGA and show the
benefits of design approximation, we integrate 16 multipliers into an accelerator
to be used altogether. Figure 10 shows the internal structure for the approximate
accelerator with 16 multipliers. Each input, i.e., . Ai and . Bi where 16 . ≥ i . ≥ 1, is
8-bit wide.

The implemented ML-based models (design selectors) are DT-based only, where
model training is done once offline, i.e., off-FPGA. Then, the VHDL implemen-
tation of the obtained DT-based model, which is the output of the offline phase,
is integrated as a functional module within the online phase of the FPGA-based

Adaptive Approximate Accelerators with Controlled Quality Using Machine Learning 521

Ta
bl
e
4

Po
w
er
, a
re
a,
 d
el
ay
, f
re
qu
en
cy
, a
nd
 e
ne
rg
y
of
 D
T-

an
d
N
N
-b
as
ed
 d
es
ig
n
se
le
ct
or
s

M
od
el

D
yn
am

ic
 p
ow

er
 (
m
W
)

Sl
ic
e
L
U
T
s

O
cc
up

ie
d
sl
ic
es

Pe
ri
od
 (
ns
)

Fr
eq
ue
nc
y
(M

H
z)

E
ne
rg
y
(p
J)

In
pu
ts

O
ut
pu
t

D
T

N
N

D
T

N
N

D
T

N
N

D
T

N
N

D
T

N
N

D
T

N
N

C
1,
 C
2,
 P
SN

R
D
eg
re
e

16

15
5

60
2

78
35

23
1

26
83

22
.9
10

31
.5
04

43
.6
5

31
.7
4

36
6.
6

48
83
.1

C
1,
 C
2,
 P
SN

R
, s
2=

D
1

Ty
pe

19

16
4

49
7

84
27

18
9

27
91

18
.5
96

31
.7
46

53
.7
8

31
.5
0

35
3.
3

52
06
.3

C
1,
 C
2,
 P
SN

R
, s
2=

D
2

Ty
pe

23

15
3

44
9

66
25

22
1

23
09

15
.9
62

31
.7
18

62
.6
5

31
.5
3

36
7.
1

48
52
.8

C
1,
 C
2,
 P
SN

R
, s
2=

D
3

Ty
pe

23

15
9

39
0

53
60

14
9

17
31

15
.4
94

29
.1
64

64
.5
4

34
.2
9

35
6.
4

46
37
.0

C
1,
 C
2,
 P
SN

R
, s
2=

D
4

Ty
pe

28

17
0

29
8

45
49

13
4

14
20

11
.8
38

28
.6
78

84
.4
7

34
.8
7

33
1.
5

48
75
.3

522 M. Masadeh et al.

Fig. 9 Methodology of hardware-based adaptive approximate design

Fig. 10 An accelerator with 16 identical approximate multipliers

adaptive system, as shown in Fig. 11. The proposed FPGA architecture contains a
set of intellectual property (IP) cores, connected through a standard bus interface.
The developed approximate accelerator core is with the capability of adjusting
processing features as commanded by the user to meet the given TOQ. For the
parallel execution, we utilize the existing block RAM in the Xilinx 7 series FPGAs,
which have 1030 blocks of 36Kbits. Thus, we store the input data (images) in a
distributed memory, e.g., save each image of size 16 KByte into 16 memory slots
each of 1 KByte. Other configurations of the memory are also possible and can be
selected to match the performance of the processing elements within the accelerator.

The online phase of the adaptive design, based on the decision tree, is presented
in Fig. 11, where the annotated numbers, i.e., 1O to 8O, show the flow of its execution
for image blending application. The target device is xc7vx485tffg1761-2, and the
evaluation kit is Xilinx Virtex-7 VC707 Platform [49]. The main components are
the reconfiguration engine, i.e., DT-based design selector, and the reconfigurable
core (RC), i.e., approximate accelerator. The RC is placed in a well-known partially
reconfigurable region (PRR) within the programmable logic.

We evaluate the effectiveness of the proposed methodology for an FPGA-
based adaptive approximate design utilizing DPR. For that, we select an image
blending application due to its computationally intensive nature and its amenability

Adaptive Approximate Accelerators with Controlled Quality Using Machine Learning 523

Partial
Bitstream 21

Partial
Bitstream 1

Partial
Bitstream 2

Flash Memory

FPGA

First Image

Second Image

Second
Memory

Design Selector
(DT-based model)

Result Image

Partial Reconfiguration Controller ICAP

HW Trigger

First
Memory

1 KB
1 KB

1 KB

1 KB
……….

1 KB
………..

1 KB
1 KB

1 KB

Approximate Accelerator
①

①

②

②

③

④

⑤
⑥

⑥

⑦

⑧

Display /Storage

Result
Memory

1 KB
1 KB

1 KB

1 KB
……….

Partial Reconfigurable Region

Fig. 11 Methodology of FPGA-based adaptive approximate design—online phase

to approximation. As a first step, to prove the validity of the proposed design
adaptation methodology, we evaluate a design without the DPR feature, utilizing the
exact accelerator as well as 20 approximate accelerators that exist simultaneously,
based on the proposed methodology. Thus, 21 different accelerators evaluate the
outputs. Next, based on the inputs and the given TOQ, the design selector chooses
the output of a specific design, which has been selected based on the DT model.
Finally, the selected result will be forwarded as the final result of the accelerator.
The evaluated area and power consumption of such a design are 15. × and 24. × more
significant than the exact implementation, respectively.

We use MATLAB to read the images, re-size them to 128 . × 128 pixels, convert
them to grayscale, and then write them into coefficient (.COE) files. Such files
contain the image pixels in a format that the Xilinx CORE Generator can read
and load. We store the images in an FPGA block RAM (BRAM). The design
evaluates the average of the pixels of each image retrieved from the memory; then,
the hardware selector decides which reconfigurable module, i.e., bitstream file, to
load into the reconfigurable region. The full bitstream is stored in flash memory to
be booted up into the FPGA at power-up. Moreover, the partial bitstreams are stored
in well-known addresses of the flash memory.

4.4 Experimental Results

In the following, we discuss the results of our proposed methodology when
evaluated on image processing applications. In particular, we present the obtained
accuracy results along with reports of the area resources utilized by the implemented
system.

Accuracy Analysis of the Adaptive Design We evaluate the accuracy of the
proposed design over 55 examples of image blending. For each example, our TOQ
(PSNR) ranges from .15 dB to .63 dB. The images we use are from the database of
“8 Scene Categories Dataset” [50], which is downloadable from [51]. Figure 12
shows the minimum, maximum, and average curves of the obtained output quality,

524 M. Masadeh et al.

Fig. 12 Obtained output quality for FPGA-based adaptive image blending

each evaluated over 55 examples. Generally, for image processing applications, the
quality is typically considered acceptable if PSNR is .30 dB at least and otherwise
unacceptable [52]. Based on that, the design adaptation methodology has been
executed 1870 times, while the TOQ has been satisfied 1530 times. Thus, the
accuracy of our obtained results in Fig. 12 is 81.82%.

Area Analysis of the Adaptive Design Table 5 shows the primary resources of the
XC7VX485T-2FFG1761 FPGA [53]. Moreover, it shows the resources required for
the image blending application utilizing an approximate accelerator, both static and
adaptive implementation. Design checkpoint files (.DCP) are a snapshot of a design
at a specific point in the flow, which includes the current netlist, any optimizations
made during implementation, design constraints, and implementation results. For
the static implementation, the .DCP file is 430 KByte only, while for the dynamic
implementation, it is 17411 KByte. This increase in the file size is due to the logic
which has been added to enable DPR, as well as the 20 different implementations
for the reconfigurable module (RM). Moreover, the overhead of such logic is shown
in the increased number of occupied slice LUTs and slice registers. However,
both static and dynamic implementations have the same size of the bitstream file
(692 KByte), which is to be downloaded into the FPGA. DPR enables downloading
the partial bitstream into the FPGA rather than the full bitstream. Thus, downloading
692 KByte rather than 19799 KByte would be 28.6 . × faster. Since different variable-
size reconfigurable modules will be assigned to the same reconfigurable region,

Adaptive Approximate Accelerators with Controlled Quality Using Machine Learning 525

Table 5 Area/size of static and adaptive approximate accelerator

.DCP Slice Slice Bonded Bitstream

Design file KByte LUTs registers RAMB36 RAMB18 IOB DSPs size (KByte)

XC7VX485T-
2FFG1761
FPGA

– 303600 607200 1030 2060 700 2800 –

Static design 430 1472 357 235 51 65 0 19799

Adaptive–
Top

17411 12876 15549 235 51 65 0 19799

Adaptive–
Exact
RM

770 1287 0 0 0 0 0 692

Adaptive–
Max Approx
RM

647 800 0 0 0 0 0 692

Adaptive–
Min Approx
RM

458 176 0 0 0 0 0 692

it must be large enough to fit the biggest one, i.e., the exact accelerator in our
methodology.

Table 5 shows the main features of the Xilinx XC7VX485T-2FFG1761 device,
including the number of slice LUTs, slice registers, and block RAM. The total
capacity of block RAM is 37080 Kbit, which could be arranged as 1030 blocks
of size 36Kbit each or 2060 blocks of size 18Kbit each. The reconfigurable module
(RM) with exact implementation occupies 1287 slice LUTs. However, the number
of slice LUTs occupied by the RM with approximate implementation varies from
800 to 176 LUTs. Thus, the area of the approximate RM varies from 62.16% to
13.68% of the area of the exact RM. Despite all of that, all 21 RMs have the same
bitstream size of 692KB.

4.5 Summary

To ensure the quality of approximation by design adaptation, we described the
proposed methodology to adapt the architecture of the FPGA-based approximate
design using dynamic partial reconfiguration. The proposed design with low power,
reduced area, small delay, and high throughput is based on runtime adaptation for
changing inputs. For this purpose, we utilized a lightweight and energy-efficient
design selector built based on decision tree models. Such input-aware design
selector determines the most suitable approximate architecture which satisfies user-
given quality constraints for specific inputs. Then, the partial bitstream file of the
selected design is downloaded into the FPGA. Dynamic partial reconfiguration
allows quickly reconfiguring the FPGA devices without having to reset the complete

526 M. Masadeh et al.

device. The obtained analysis results of the image blending application showed that
it is possible to satisfy the TOQ with an accuracy of 81.82%, utilizing a partial
bitstream file that is 28.6. × smaller than the full bitstream.

5 Conclusions

Approximate computing has re-emerged as an energy-efficient computing paradigm
for error-tolerant applications. Thus, it is promising to be within the architecture and
algorithms of brain-inspired computing, which has massive device parallelism and
the ability to tolerate unreliable operations. However, there are essential questions
to be answered before approximate computing can be made a viable solution for
energy-efficient computing, such as [54] (1) how much to approximate at the
component level to be able to observe the gains at the system level, (2) how to
measure the final quality of approximation, and (3) how to maintain the desired
output quality of an approximate application.

Toward addressing these challenges, we proposed a methodology that assures the
quality of approximate computing through design adaptation based on fine-grained
inputs and user preferences. For that, we designed a lightweight machine learning-
based model, which functions as a design selector, to select the most suitable
approximate designs to ensure the final quality of the approximation.

We proposed a novel methodology to generate an adaptive approximate design
that satisfies user-given quality constraints, based on the applied inputs. For that,
we have built a machine learning-based model (that functions as a design selector)
to determine the most suitable approximate design for the applied inputs based on
the associated error metrics. To solve the design selector model, we used decision
tree and neural network techniques to select the approximate design that matches
the closest accuracy for the applied inputs.

We realized the software and hardware implementations of the proposed method-
ology, with negligible overhead. The obtained analysis results of the image pro-
cessing application showed that it is possible to satisfy the TOQ with accuracy
ranging from 80% to 85.7% for various error-resilient applications. The FPGA-
based adaptive approximate accelerator with constraints on size, cost, and power
consumption relies on dynamic partial reconfiguration to assist in satisfying these
requirements. In summary, the general proposed design adaptation methodology can
be seen as a basis for automatic quality assurance. It offers a promising solution to
reduce the approximation error while maintaining approximation benefits.

References

1. B. Moons, M. Verhelst, Energy-efficiency and accuracy of stochastic computing circuits in
emerging technologies. IEEE J. Emerging Sel. Top. Circuits Syst. 4(4), 475–486 (2014)

Adaptive Approximate Accelerators with Controlled Quality Using Machine Learning 527

2. J. Han, M. Orshansky, Approximate computing: An emerging paradigm for energy-efficient
design, in European Test Symposium (2013), pp. 1–6

3. S. Venkataramani, S.T. Chakradhar, K. Roy, A. Raghunathan, Approximate computing and the
quest for computing efficiency, in Design Automation Conference (2015), pp. 1–6

4. R. Ragavan, B. Barrois, C. Killian, O. Sentieys, Pushing the limits of voltage over-scaling for
error-resilient applications, in Design, Automation Test in Europe (2017), pp. 476–481

5. P. Roy, R. Ray, C. Wang, W.F. Wong, ASAC: automatic sensitivity analysis for approximate
computing. SIGPLAN Not. 49(5), 95–104 (2014)

6. V. Gupta, D. Mohapatra, A. Raghunathan, K. Roy, Low-power digital signal processing using
approximate adders. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(1), 124–137
(2013)

7. R. Nair, Big data needs approximate computing: technical perspective. Commun. ACM 58(1),
104–104 (2014)

8. A. Mishra, R. Barik, S. Paul, iACT: A software-hardware framework for understanding the
scope of approximate computing, in Workshop on Approximate Computing Across the System
Stack (2014), pp. 1–6

9. J. Bornholt, T. Mytkowicz, K. McKinley, UnCertain: a first-order type for uncertain data.
SIGPLAN Not. 49(4), 51–66 (2014)

10. M. Laurenzano, P. Hill, M. Samadi, S. Mahlke, J. Mars, L. Tang, Input responsiveness: using
canary inputs to dynamically steer approximation, in Programming Language Design and
Implementation (ACM, New York, 2016), pp. 161–176

11. V.K. Chippa, S.T. Chakradhar, K. Roy, A. Raghunathan, Analysis and characterization of
inherent application resilience for approximate computing, in Design Automation Conference
(2013), pp. 1–9

12. E. Nogues, D. Menard, M. Pelcat, Algorithmic-level approximate computing applied to energy
efficient hevc decoding. IEEE Trans. Emerg. Top. Comput. 7(1), 5–17 (2019)

13. M. Masadeh, O. Hasan, S. Tahar, Comparative study of approximate multipliers, in ACM Great
Lakes Symposium on VLSI (2018), pp. 415–418

14. M. Masadeh, O. Hasan, S. Tahar, Machine-learning-based self-tunable design of approximate
computing. IEEE Trans. Very Large Scale Integr. VLSI Syst. 29(4), 800–813 (2021)

15. H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, Neural acceleration for general-purpose
approximate programs, in International Symposium on Microarchitecture (2012), pp. 449–460

16. M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, J. Henkel, Invited: cross-layer approximate
computing: From logic to architectures, in Design Automation Conference (2016), pp. 1–6

17. S. Ullah, S. Rehman, B.S. Prabakaran, F. Kriebel, M.A. Hanif, M. Shafique, A. Kumar, Area-
optimized low-latency approximate multipliers for FPGA-Based hardware accelerators, in
Design Automation Conference (2018), pp. 1–6

18. M. Imani, R. Garcia, A. Huang, T. Rosing, Cade: configurable approximate divider for energy
efficiency, in Design, Automation Test in Europe Conference (2019), pp. 586–589

19. G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, K. Pekmestzi, Design-efficient approximate
multiplication circuits through partial product perforation. IEEE Trans. Very Large Scale
Integr. Syst. 24(10), 3105–3117 (2016)

20. P. Kulkarni, P. Gupta, M. Ercegovac, Trading accuracy for power with an underdesigned
multiplier architecture, in International Conference on VLSI Design (2011), pp. 346–351

21. K.Y. Kyaw, W.L. Goh, K.S. Yeo, Low-power high-speed multiplier for error-tolerant applica-
tion, in International Conference of Electron Devices and Solid-State Circuits (2010), pp. 1–4

22. K.M. Reddy, Y.B.N. Kumar, D. Sharma, M.H. Vasantha, Low power, high speed error tolerant
multiplier using approximate adders, in VLSI Design and Test (2015), pp. 1–6

23. M. Masadeh, O. Hasan, S. Tahar, Comparative study of approximate multipliers, in Great Lakes
Symposium on VLSI (ACM, New York, 2018), pp. 415–418

24. M. Masadeh, O. Hasan, S. Tahar, Comparative study of approximate multipliers, in CoRR, vol.
abs/1803.06587 (2018)

25. W. Baek, T. Chilimbi, Green: a framework for supporting energy-conscious programming
using controlled approximation. SIGPLAN Not. 45(6), 198–209 (2010)

528 M. Masadeh et al.

26. M. Samadi, J. Lee, D. Jamshidi, A. Hormati, S. Mahlke, SAGE: self-tuning approximation for
graphics engines, in International Symposium on Microarchitecture (2013), pp. 13–24

27. T. Wang, Q. Zhang, N. Kim, Q. Xu, On effective and efficient quality management for
approximate computing, in International Symposium on Low Power Electronics and Design
(2016), pp. 156–161

28. X. Chengwen, W. Xiangyu, Y. Wenqi, X. Qiang, J. Naifeng, L. Xiaoyao, J. Li, On quality
trade-off control for approximate computing using iterative training, in Design Automation
Conference (2017), pp. 1–6

29. M. Shafique, W. Ahmad, R. Hafiz, J. Henkel, A low latency generic accuracy configurable
adder, in Design Automation Conference (ACM, New York, 2015), pp. 86:1–86:6

30. X. Sui, A. Lenharth, D. Fussell, K. Pingali, Proactive control of approximate programs, in
International Conference on ASPLOS (ACM, New York, 2016), pp. 607–621

31. M. Masadeh, O. Hasan, S. Tahar, Input-conscious approximate multiply-accumulate (MAC)
unit for energy-efficiency. IEEE Access 7, 147129–147142 (2019)

32. D. Mohapatra, V.K. Chippa, A. Raghunathan, K. Roy, Design of voltage-scalable meta-
functions for approximate computing, in Design, Automation Test in Europe (2011), pp. 1–6

33. S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning: From Theory to Algo-
rithms (Cambridge University Press, Cambridge, 2014)

34. M. Masadeh, O. Hasan, S. Tahar, Controlling approximate computing quality with machine
learning techniques, in Design, Automation and Test in Europe (2019), pp. 1575–1578

35. L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression Trees (Chapman
and Hall, Wadsworth, 1984)

36. R.C. Barros, A.C. de Carvalho, A.A. Freitas, Automatic Design of Decision-Tree Induction
Algorithms (Springer, Berlin, 2015)

37. A. Raha, V. Raghunathan, qLUT: Input-Aware quantized table lookup for energy-efficient
approximate accelerators. ACM Trans. Embed. Comput. Syst. 16(5s), 130:1–130:23 (2017)

38. S. Xu, B.C. Schafer, Approximate reconfigurable hardware accelerator: adapting the micro-
architecture to dynamic workloads, in International Conference on Computer Design (IEEE,
New York, 2017), pp. 113–120

39. M. Masadeh, O. Hasan, S. Tahar, Error analysis of approximate array multipliers, in CoRR
(2019). https://arxiv.org/pdf/1908.01343.pdf

40. T. Yang, T. Ukezono, T. Sato, Low-power and high-speed approximate multiplier design with
a tree compressor, in International Conference on Computer Design (2017), pp. 89–96

41. Partial Reconfiguration User Guide (2013). https://www.xilinx.com/support/documentation/
sw_manuals/xilinx14_7/ug702.pdf. Last accessed on 2023-02-24

42. K. Vipin, S.A. Fahmy, FPGA dynamic and partial reconfiguration: a survey of architectures,
methods, and applications. ACM Comput. Surv. 51(4), 72:1–72:39 (2018)

43. D. Koch, Partial Reconfiguration on FPGAs: Architectures, Tools and Applications (Springer,
Berlin, 2012)

44. Mentor Graphics Modelsim (2019). https://www.mentor.com/company/higher_ed/modelsim-
student-edition. Last accessed on 2023-02-24

45. Xilinx XPower Analyser (2019). https://www.xilinx.com/support/documentation/sw_manuals/
xilinx11/ug733.pdf. Last accessed on 2023-02-24

46. Xilinx Integrated Synthesis Environment (2019). https://www.xilinx.com/products/design-
tools/ise-design-suite/ise-webpack.html. Last accessed on 2023-02-24

47. S. Ngah, R. Abu Bakar, A. Embong, S. Razali, Two-steps implementation of sigmoid function
for artificial neural network in field programmable gate array. ARPN J. Eng. Appl. Sci. 11(7),
4882–4888 (2016)

48. M. Zhang, S. Vassiliadis, J.G. Delgado-Frias, Sigmoid generators for neural computing using
piecewise approximations. IEEE Trans. Comput. 45(9), 1045–1049 (1996)

49. VC707 Evaluation Board for the Virtex-7 FPGA: User Guide (2019). https://www.xilinx.com/
support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf. Last accessed on
2023-02-13

https://arxiv.org/pdf/1908.01343.pdf
https://arxiv.org/pdf/1908.01343.pdf
https://arxiv.org/pdf/1908.01343.pdf
https://arxiv.org/pdf/1908.01343.pdf
https://arxiv.org/pdf/1908.01343.pdf
https://arxiv.org/pdf/1908.01343.pdf
https://arxiv.org/pdf/1908.01343.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug733.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug733.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug733.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug733.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug733.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug733.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug733.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug733.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug733.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug733.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug733.pdf
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf

Adaptive Approximate Accelerators with Controlled Quality Using Machine Learning 529

50. A. Oliva, A. Torralba, Modeling the shape of the scene: a holistic representation of the spatial
envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

51. Modeling the shape of the scene: a holistic representation of the spatial envelope (2020). http://
people.csail.mit.edu/torralba/code/spatialenvelope/. Last accessed on 2023-02-04

52. M. Barni, Document and Image compression (CRC Press, New York, 2006)
53. 7 Series FPGAs Data Sheet: Overview (2020). https://www.xilinx.com/support/

documentation/data_sheets/ds180_7Series_Overview.pdf. Last accessed on 2023-02-13
54. J. Han, Introduction to approximate computing, in VLSI Test Symposium (2016), pp. 1–1

http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://people.csail.mit.edu/torralba/code/spatialenvelope/
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf

	Preface
	References

	Contents
	Part I In-Memory Computing, Neuromorphic Computing and Machine Learning
	Emerging Technologies for Memory-Centric Computing
	1 Introduction
	2 Resistive Random Access Memory (RRAM)
	2.1 Device
	2.2 Memory Architectures
	2.3 IMC Applications
	2.3.1 Main Structures of Meristors-based Circuits
	2.3.2 Vertical Cross-Point Resistive Memory (VRRAM)
	2.3.3 Neural Network

	3 Spin-Transfer Torque Magnetoresistive Random Access Memory
	3.1 Device
	3.2 Memory Architectures
	3.3 IMC Applications
	3.3.1 Binary Neural Network

	4 Phase-Change Memory
	4.1 Device
	4.2 Memory Architectures
	4.3 IMC Applications
	4.3.1 Binary Neural Network

	5 FeFET
	5.1 Device
	5.2 Memory Architectures
	5.2.1 FeFET-Based Memory
	5.2.2 Non-volatile Flip-Flop
	5.2.3 Ternary Content Addressable Memory (TCAM)

	5.3 IMC Applications
	5.3.1 Reconfigurable Logic Gates
	5.3.2 FeFET-Based Look-Up Table
	5.3.3 Convolution Neural Network
	5.3.4 FeFET-CiM

	6 Comparison and Discussion
	7 Conclusion
	References

	An Overview of Computation-in-Memory (CIM) Architectures
	1 Introduction
	2 Classification of Computer Architectures
	2.1 Classification Based on Computation Position
	2.2 Classification Based on Memory Technology
	2.2.1 Charge-Based Memories
	2.2.2 Non-charge-Based Memories

	2.3 Classification Based on Computation Parallelism

	3 Computation-in-Memory-Array (CIM-A)
	3.1 DRISA-3T1C: A DRAM-Based Reconfigurable In Situ Accelerator with 3 Transistors and 1 Capacitor (3T1C) Design
	3.2 CRS: Complementary Resistive Switch Architecture
	3.3 CIM: Computation-in-Memory
	3.4 PLiM: Programmable Logic-in-Memory Computer
	3.5 MPU: Memristive Memory Processing Unit
	3.6 ReVAMP: ReRAM-Based VLIW Architecture

	4 Computation-in-Memory-Peripherals (CIM-P)
	4.1 S-AP: Cache Automaton
	4.2 ISAAC: A Convolutional Neural Network Accelerator with In Situ Analog Arithmetic
	4.3 PRIME: A Processing-in-Memory Architecture for Neural Network Computation in ReRAM-Based Main Memory
	4.4 STT-CiM: Computing-in-Memory Spin-Transfer Torque Magnetic RAM
	4.5 DPP: Data Parallel Processor
	4.6 R-AP: Resistive RAM Automata Processor

	5 CIM Design-flow
	5.1 System-Level Design
	5.1.1 Application Profiling for Critical Kernel Identification
	5.1.2 Accelerator Configuration Definition

	5.2 Circuit-Level Design

	6 Conclusion
	References

	Toward Spintronics Non-volatile Computing-in-Memory Architecture
	1 Introduction
	2 MRAM
	3 Implementation of Boolean Logic
	3.1 Analog Implementation
	3.2 Read/Write Implementation
	3.3 Cell Modification
	3.4 Peripheral Circuit Modification

	4 MRAM for Neural Networks
	4.1 CNN and BNN Basics
	4.2 MRAM for XNOR Operation
	4.3 MRAM for Bit-Count Operation
	4.4 MRAM for Max-Pool Operation
	4.5 MRAM for BNN Training
	4.6 MRAM for Analog Computing

	5 MRAM for Other Applications
	5.1 DNA Read Alignment
	5.2 Triangle Counting
	5.3 True Random Count Generators

	References

	Is Neuromorphic Computing the Key to Power-Efficient Neural Networks: A Survey
	1 Introduction to Biomorphism
	2 Understanding the Biological Neuron
	2.1 The Response to Extra-cellular Stimulus

	3 Neuromorphic Computing: Learning from the Brain
	4 Spiking Neural Networks
	4.1 Spiking Neuron Models
	4.2 Common Training Algorithms
	4.3 Applications

	5 Hardware Accelerators
	5.1 General Mesh Accelerators
	5.2 Feedforward Accelerators
	5.3 Resource Analysis and Discussion

	6 Limitations and Potential Improvements of SNNs
	7 Conclusion
	References

	Emerging Machine Learning Using Siamese and Triplet Neural Networks
	1 Introduction
	2 Multi-Branch NNs: Algorithms and Designs
	2.1 Siamese Networks
	2.2 Triplet Networks
	Network Characteristics
	Separately Constrained Triple Loss in TNs

	2.3 ASIC-Based Design for a Branch Network
	Serial Implementation
	Hybrid Implementation
	Evaluation

	3 Error Tolerance of Multi-Branch NNs
	3.1 Error Tolerance During Inference
	Bit-Flip Fault Model
	Impact of Bit-Flip Faults on Inference
	Weight Filter
	Single Error Correction (SEC) Code
	Parity Code
	Evaluation

	3.2 Error Tolerance During Training
	Stuck-at Fault Model
	Impact of Stuck-at Faults on Training
	Regularization to Anchor Outputs
	Modified Margin

	4 Conclusion
	References

	An Active Storage System for Intelligent Data Analysis and Management
	1 Introduction
	2 Background and Preliminaries
	2.1 Unstructured Data Analysis System
	2.2 Near Data Processing and Deep Learning Accelerator
	2.3 Learned Data Cache and Placement
	2.4 Active Store

	3 Motivation
	3.1 Execution Time Breakdown
	3.2 ANNS Algorithm Exploration

	4 Active Storage System
	4.1 The Active Storage Software: DHS Library
	4.1.1 Configuration Library
	4.1.2 User Library
	4.1.3 Active Storage Runtime

	4.2 Hardware Architecture: The Active Storage
	4.3 The Procedure of Data Retrieval in Active Storage

	5 DHS-x Accelerator
	5.1 Architecture: Direct Flash Accessing
	5.2 I/O Path in Active Storage
	5.3 Hybrid Search Engine
	5.3.1 Brute-Force Search
	5.3.2 KD-Tree Search
	5.3.3 Graph Search
	5.3.4 Auto-Selection Model
	5.3.5 Data Flow

	5.4 LSTM-Based Data Cache and Placement

	6 Evaluation
	6.1 Hardware Implementation
	6.2 Experimental Setup
	6.3 Evaluation of DHS Algorithm
	6.4 Evaluation of DHS-x Accelerator
	6.5 The Single-Node System Based on Active Storage
	6.6 Data Cache and Placement

	7 Conclusion
	References

	Error-Tolerant Techniques for Classifiers Beyond Neural Networks for Dependable Machine Learning
	1 Introduction
	2 K Nearest Neighbors
	2.1 Errors in KNNs
	2.2 Voting-Margin-Based Error-Tolerant KNNs for Binary Classification
	2.3 K+1 Nearest Neighbors for Multiclass Classification

	3 Ensemble Classifier
	3.1 Random Forest
	3.2 Voting-Margin-Based Error-Tolerant Random Forest

	4 Support Vector Machines
	4.1 SVM with Different Kernels
	4.2 Result-Based Re-Computation Error-Tolerant SVM

	5 Conclusion
	References

	Part II Stochastic Computing
	Efficient Random Number Sources Based on D Flip-Flops for Stochastic Computing
	1 Introduction
	2 Guidelines for Applying LFSRs in Stochastic Computing
	2.1 Model and Evaluation Methodology for LFSRs
	2.2 The Selection of the Feedback Polynomials for LFSR Pair
	2.3 The Selection of the Seeds for Identical-Feedback LFSR Pair

	3 Proposed Method for Building Successive RNSs
	3.1 Method for Building Two Successive RNSs
	3.2 Method for Building Multiple Successive RNSs

	4 Method for Building Non-successive RNSs
	5 Efficient Designs of RNSs Based on DFFs
	6 Experimental Results
	6.1 Experimental Setup
	6.2 Accuracy Comparison
	6.3 Area Comparison
	6.4 Area–Accuracy Trade-off Comparison

	7 Conclusion
	References

	Stochastic Multipliers: from Serial to Parallel
	1 Introduction
	2 Background
	2.1 Binary Multiplier
	2.2 Booth Multiplier
	2.3 Stochastic Number
	2.4 SC Correlation and Components

	3 The Design Approaches of Stochastic Multipliers
	3.1 Stochastic Multiplier
	3.1.1 Shared Stochastic Number Generator-Based Multiplier
	3.1.2 Advanced Termination-Based Multiplier
	3.1.3 Thermometer Code-Based Multiplier
	3.1.4 Optimal Multiplicative Bitstream-Based Multiplier
	3.1.5 Evaluation
	3.1.6 Multiply-Accumulate Unit
	3.1.7 Image Processing

	3.2 Exact Stochastic Multipliers
	3.2.1 Deterministic Approaches
	3.2.2 Counter-Based Multiplier
	3.2.3 Linear Feedback Shifter Register-Based Multiplier
	3.2.4 Halton Sequence-Based Multiplier
	3.2.5 Evaluation
	3.2.6 Robert's Cross Edge Detection
	3.2.7 Bernsen Binarization Algorithm

	4 Conclusion
	References

	Applications of Ising Models Based on Stochastic Computing
	1 Introduction
	2 Preliminaries
	2.1 SA for the Ising Model
	2.2 P-bit-Based Ising Model

	3 Stochastic Simulated Annealing
	3.1 Spin Operations
	3.2 Annealing Process of SSA

	4 CMOS Invertible Logic
	4.1 Basics of CIL
	4.2 Training BNNs Based on CIL

	5 CIL Training Hardware Design
	5.1 Architecture of CIL Training Hardware
	5.2 Performance Evaluation

	6 Conclusion
	References

	Stochastic and Approximate Computing for Deep Learning: A Survey
	1 Introduction
	2 Background
	2.1 Stochastic Computing
	2.2 Approximate Computing
	2.3 Deep Learning Arithmetic Units
	2.4 Deep Learning Application Accelerators

	3 Stochastic and Approximate Computing-Based Deep Learning Applications
	4 Area- and Power-Efficient Hybrid Stochastic-Approximate Designs in Deep Learning Applications
	4.1 Low Complexity with High-Accuracy Winograd Convolution Based on Stochastic and Approximate Computing
	4.2 A Hybrid Power- and Area-Efficient Stochastic-Approximate Neuron

	5 Conclusion
	6 Future Research Directions
	References

	Stochastic Computing Applications to Artificial Neural Networks
	1 Introduction
	2 Stochastic Computing Basic Principles
	2.1 Stochastic Signals and Correlation

	3 Classical Artificial Neural Networks
	3.1 Application of Stochastic Computing to Artificial Neural Networks
	3.1.1 Fully Connected Neural Networks
	3.1.2 Second-Generation MLP Configuration
	3.1.3 Radial Basis Function Neural Network Configuration
	3.1.4 Applications
	3.1.5 Convolutional Neural Networks
	3.1.6 CNN Structure
	3.1.7 Stochastic Computing Implementation
	3.1.8 Experiments and Results

	4 Morphological Neural Networks
	4.1 Application of Stochastic Computing to the Implementation of Morphological Neural Networks
	4.1.1 SC-Based Hardware Implementation

	5 Conclusions
	References

	Characterizing Stochastic Number Generators for Accurate Stochastic Computing
	1 Introduction
	2 Stochastic Number Generators
	2.1 Linear Feedback Shift Register (LFSR)-Based SNGs
	2.2 Low-Discrepancy (LD) Sequence-Based SNGs
	2.2.1 Halton Sequence Generator
	2.2.2 Sobol Sequence Generator
	2.2.3 Finite State Machine (FSM)-Based SNG

	3 Accuracy Metrics
	4 Experimental Methods and Results
	5 Conclusion
	References

	Part III Inexact/Approximate Computing
	Automated Generation and Evaluation of Application-Oriented Approximate Arithmetic Circuits
	1 Introduction
	2 Automated Generation Methodologies for AACs
	2.1 Statistical Error Metrics
	2.2 Automated Generation of Generic AACs
	2.2.1 Netlist Transformation
	2.2.2 Boolean Rewriting
	2.2.3 High-Level Approximation

	2.3 Automated Generation of Application-Oriented AACs
	2.4 Summary

	3 QoR Evaluation of the AAC-Based Applications
	3.1 Simulation Acceleration
	3.2 Prediction Model
	3.3 Functional Abstraction
	3.4 Summary

	4 QoR Recovery
	4.1 Self-Adjustment
	4.2 Error-Aware Adjustment
	4.3 Robustness Enhancement
	4.4 Summary

	5 Conclusions and Prospects
	References

	Automatic Approximation of Computer Systems Through Multi-objective Optimization
	1 Introduction
	2 Approximate Computing and Its Applications
	2.1 Overview

	3 Multi-objective Approximate Design
	3.1 Identifying Approximable Portions and Suitable Approximation Techniques
	3.2 Optimization and Design-Space Exploration
	3.2.1 Multi-objective Optimization Problems
	3.2.2 MOP Modeling: Identifying Decision Variables and Suitable Fitness Functions

	3.3 Summary

	4 Automatic Approximation of Combinational Circuits
	4.1 Approximate Variant Generation
	4.2 Design-Space Exploration
	4.3 Experimental Results

	5 Approximation of Image-Processing Applications
	5.1 The E-IDEA Framework
	5.2 The dct Case Study
	5.2.1 Toward Approximate dct
	5.2.2 Generating of Approximate Variants
	5.2.3 Design-Space Exploration
	5.2.4 Experimental Results

	6 Automatic Approximation of Artificial Intelligence Applications
	6.1 Neural Networks
	6.1.1 Approximate DNNs
	6.1.2 Automatic Approximation of DNN Applications

	6.2 Decision-Tree-Based Multiple Classifier Systems
	6.2.1 Hardware Accelerators Targeting Decision-Tree-Based Classifiers
	6.2.2 Approximate DTMCSs
	6.2.3 Automatic Approximation of dtmcs Applications

	7 Conclusion
	References

	Evaluation of the Functional Impact of Approximate Arithmetic Circuits on Two Application Examples
	1 Introduction
	2 Description of Approximate Arithmetic Units
	2.1 Approximate Adders
	2.1.1 Lower-OR Adder (LOA)
	2.1.2 Generic Accuracy Configurable Adder (GeAr)
	2.1.3 Truncated Adder (TruA)

	2.2 Approximate Multipliers
	2.2.1 Under-Designed Approximate Multiplier (UDM)
	2.2.2 Broken Array Multiplier (BAM)
	2.2.3 Approximate Booth Multiplier (ABM)
	2.2.4 Carry-In Prediction Multiplier
	2.2.5 Logarithmic Multiplier (LM)

	2.3 Comparison of Approximate Multiplier Approaches

	3 Application to Digital Filters
	3.1 Filter Description and Specifications
	3.2 Effects of Approximate Operators in the Filter Specs

	4 Application to Deep Neural Networks
	4.1 Neural Network Basics
	4.2 YOLO – DCNN for Object Detection
	4.3 Approximate FP MAD Units
	4.4 Effects of Approximate FP16 in YOLOv3
	4.5 Approximate Accelerator Application: Approximate Systolic Array

	5 Conclusions
	References

	A Top-Down Design Methodology for Approximate Fast Fourier Transform (FFT) Design
	1 Introduction
	2 Background
	2.1 FFT Hardware Implementation
	2.2 Configurable Floating-Point Approximate Multiplier

	3 Overview
	4 Method
	4.1 Error Modeling
	4.1.1 Error Characteristics Analysis
	4.1.2 Error Model Construction
	4.1.3 FFT Precision Calculation

	4.2 Approximation Optimization
	4.3 Design Implementation

	5 Experimental Results
	5.1 Performance of Error Model
	5.2 Performance of Optimization
	5.3 Approximate FFT Design Comparison
	5.4 System Application

	6 Conclusions
	References

	Approximate Computing in Deep Learning System: Cross-Level Design and Methodology
	1 Introduction
	2 Related Work
	2.1 Binary-Weight Neural Networks
	2.2 Low-Power BWNN System with Approximation
	2.3 Quality-Driven Approximate Computing System

	3 Estimation and Evaluation of Low-Power Approximate NN System
	3.1 Estimation of Approximate Units
	3.2 Approximation Noise in Datapath
	3.3 System Evaluation Approach and Mechanism

	4 Quality Configurable Approximate Computing
	4.1 Evaluation of Low-Power Approximate Array
	4.2 Design of Hierarchical Adder Cluster
	4.3 Pre-analysis for Estimating BWNN Acceleration System
	4.3.1 Adaptability for Convolutional/Pooling/Activation Layers
	4.3.2 Parameterized Adder Cluster Design
	4.3.3 Evaluation-Based Gating for Scheduling Mechanism

	5 Reconfigurable Lower-Power NN System for Keyword Spotting Application
	5.1 Deployment of Approximate BWNN
	5.2 A 22-nm Low-Power System for Always-On KWS System

	6 Experimental Results
	7 Conclusion
	References

	Adaptive Approximate Accelerators with Controlled Quality Using Machine Learning
	1 Introduction
	1.1 Approximate Computing Error Metrics
	1.2 Approximate Accelerators
	1.3 Quality Control of Approximate Accelerators

	2 Proposed Methodology
	2.1 Machine Learning-Based Models
	2.1.1 Decision Tree-Based Design Selector
	2.1.2 Neural Network-Based Design Selector

	3 Software-Based Adaptive Design of Approximate Accelerators
	3.1 Adaptive Design Methodology
	3.2 Machine Learning-Based Models
	3.2.1 Decision Tree-Based Design Selector
	3.2.2 Neural Network-Based Design Selector

	3.3 Experimental Results of Image Blending
	3.4 Summary

	4 Hardware-Based Adaptive Design of Approximate Accelerators
	4.1 Dynamic Partial Reconfiguration (DPR)
	4.2 Machine Learning-Based Models
	4.2.1 Decision Tree-Based Design Selector
	4.2.2 Neural Network-Based Design Selector

	4.3 Adaptive Design Methodology
	4.4 Experimental Results
	4.5 Summary

	5 Conclusions
	References

	Design Wireless Communication Circuits and Systems Using Approximate Computing
	1 Introduction
	2 Approximate FP Arithmetic Unit in Wireless Communication System
	2.1 Approximate FP Adder
	2.1.1 Data Distribution Characteristics in Wireless Communication Systems
	2.1.2 Truncation-Based Approximate FP Adders

	2.2 Approximate FP Multiplier
	2.2.1 Low-Complexity Exact Mantissa Multiplier
	2.2.2 Truncation and Compensation Scheme for Mantissa Multiplication

	2.3 Application in Wireless Communication System

	3 Approximate FP FFT Processor
	3.1 DFT and FFT
	3.2 Mantissa Bit-Width Adjustment Algorithm
	3.2.1 The Error Sensitivity of FFT
	3.2.2 The Mantissa Bit-Width Adjustment Algorithm

	3.3 Approximate FP FFT Processor in Channel Estimation

	4 Approximate Polar Decoder
	4.1 Approximate SC Polar Code Decoder
	4.1.1 Processing Element for Decoding Intermediate Stages
	4.1.2 The Proposed Low-Complexity Approximate PE
	4.1.3 Overall Decoder Architecture

	4.2 Approximate BPF Polar Code Decoder

	5 Conclusion
	References

	Logarithmic Floating-Point Multipliers for Efficient Neural Network Training
	1 Introduction
	2 Preliminaries
	2.1 FP Representation
	2.1.1 IEEE 754 Standard FP Format (FP754)
	2.1.2 Nearest Power-of-Two FP Format (NPFP2)

	2.2 Logarithmic FP Multiplication

	3 Piecewise Approximation Design Framework
	3.1 Logarithm Approximation
	3.2 Anti-logarithm Approximation
	3.3 Logarithmic FP Multiplication

	4 Hardware Implementation
	4.1 The Generic Circuit
	4.1.1 Logarithm Approximation Block
	4.1.2 Anti-logarithm Approximation Block
	4.1.3 Adjustment Block

	5 Case Studies of PWLM Designs
	6 Performance Evaluation and Neural Network Applications
	6.1 Accuracy Evaluation
	6.2 Hardware Evaluation
	6.3 Neural Network Applications
	6.3.1 Experimental Setup
	6.3.2 Classification Accuracy Analysis
	6.3.3 Hardware Evaluation

	7 Conclusions
	References

	Part IV Quantum Computing and Other Emerging Computing
	Cryogenic CMOS for Quantum Computing
	1 Background
	1.1 Brief Background on Quantum Computing
	1.2 Cryo-CMOS in Si QD Quantum Processor

	2 Transport in Cryogenic CMOS
	2.1 Cryogenic MOSFET Characteristics
	2.2 Compact Models
	2.3 Progress of Cryogenic MOSFET Models
	2.3.1 Subthreshold Swing S
	2.3.2 Threshold Voltage Vth

	3 High-Frequency Noise in Cryogenic CMOS
	3.1 High-Frequency Noise in MOSFET
	3.2 Noise in a Mesoscopic View
	3.3 Experimental Verification
	3.4 Progress and Challenges on Modeling High-Frequency Noise

	4 Numerical Simulation for Cryogenic CMOS
	References

	Quantum Computing on Memristor Crossbars
	1 Introduction
	1.1 Quantum Computers' Challenges and the Need of Simulators
	1.2 Memristor Crossbars as Hardware Accelerators

	2 Basics of Quantum Computations
	2.1 Quantum Computations in Simulators
	2.2 Gates and Qubit Representation

	3 Performing Quantum Computations on Memristive Crossbars
	3.1 Simple Example of the Proposed Circuit Operation
	3.2 Multiple-Crossbar Configuration

	4 Simulation Results of the Universal Set of Quantum Gates
	4.1 The Hadamard Gate
	4.2 The CCNOT Gate

	5 Simulation Result of Quantum Algorithms' Implementation
	5.1 Utilized Memristor and Transistor Models
	5.2 Deutsch Algorithm
	5.3 Grover Algorithm

	6 Framework
	7 Discussion on the Variability and Stochastic Behavior of the Memristor
	8 Conclusions
	Appendix
	References

	A Review of Posit Arithmetic for Energy-Efficient Computation: Methodologies, Applications, and Challenges
	1 Introduction
	2 Posit Numeric Format
	2.1 General Format
	2.2 Sign-Magnitude Form Decoding Method
	2.3 Two's Complement Form Decoding Method
	2.4 Posit to Quire Conversion
	2.5 Quire to Posit Conversion

	3 Posit Applications
	4 Posit Developing Tools
	5 Posit-Based Arithmetic Units
	5.1 Posit Decoding and Encoding Module
	5.2 Posit Arithmetic Units

	6 Posit-Based Hardware Processors
	7 Discussion and Perspectives
	7.1 Improving the Latency of Posit Arithmetic Operations
	7.2 Developing a Practical Tool for Posit Verification
	7.3 Designing a Flexible Posit Processor for Applications
	7.4 Exploring the Use of Posit in More Fields of Applications

	8 Conclusion
	References

	Designing Fault-Tolerant Digital Circuits in Quantum-Dot Cellular Automata
	1 Introduction
	2 QCA Operation
	2.1 Cell Components and Logic
	2.2 Radius of Effect
	2.3 Kink Energy
	2.4 Wires
	2.5 Logic Gates
	2.6 Clocking
	2.7 Crossover
	2.8 Performance Metrics
	2.9 Simulation Settings

	3 Fabrication Defects
	3.1 Critical Factor
	3.2 Tolerance Factor
	3.3 Immunity Percentage

	4 Design Considerations for Fault Tolerance
	4.1 Wires
	4.2 Gates
	4.3 Crossovers
	4.4 Clocking
	4.5 Layout Challenges

	5 Conclusion
	References

	Ising Machines Using Parallel Spin Updating Algorithms for Solving Traveling Salesman Problems
	1 Introduction
	2 Background
	2.1 Problem-Solving via Ising Machines
	2.2 Mapping the Traveling Salesman Problem

	3 Improved Parallel Annealing for TSPs
	3.1 Parallel Annealing
	3.2 Improved Parallel Annealing
	3.3 A Temperature Function
	3.4 A Clustering Approach

	4 Experimental Results
	4.1 Experiment Setup
	4.2 Using Different Incremental Temperatures
	4.3 Comparison

	5 Improved Simulated Bifurcation for TSPs
	5.1 Simulated Bifurcation
	5.2 TSP Solvers Using the Ising Model Without External Fields
	5.2.1 Reformulation of the TSP
	5.2.2 Solving the TSP with bSB

	5.3 Improvement Strategies
	5.3.1 Dynamic Time Steps
	5.3.2 Evolution of x(n+1)(n+1)

	5.4 Experimental Results
	5.4.1 Experiment Setup

	5.5 Using Different Dynamic Configurations of the Time Step
	5.5.1 Using Different Evolution Approaches for x(n+1)(n+1)
	5.5.2 Comparison

	6 Conclusions
	References

	Approximate Communication in Network-on-Chips for Training and Inference of Image Classification Models
	1 Introduction
	2 Backgrounds
	2.1 Existing Approximate Communication Techniques
	2.2 Existing Sparse Matrix Compression Techniques

	3 Proposed Approximate Communication Technique
	3.1 Approximate Communication for Image Preprocessing (ACT-P)
	3.1.1 Quality Control
	3.1.2 Data Approximation

	3.2 Approximate Communication for Model Inference (ACT-I)
	3.2.1 Quality Control
	3.2.2 Data Approximation

	4 Implementation of the Approximate Communication Technique (ACT)
	4.1 Dual-Matrix Compression Method for Sparse Matrix
	4.1.1 Selection Algorithm Design
	4.1.2 Row-Partitioned Compression Format

	4.2 Software Interface for Approximate Communication
	4.3 Architecture Design of ACT
	4.3.1 Approximate Network Interface (Preprocessing Cores)
	4.3.2 Approximate Network Interface (Accelerator Cores)
	4.3.3 Approximate Network Interface (Memory Controller and Shared Cache)

	5 Evaluation
	5.1 Network Latency
	5.2 Dynamic Power Consumption
	5.3 Accuracy Loss
	5.4 Overall System Performance Evaluation
	5.5 Sensitivity Study

	6 Conclusion
	References

	Index

